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1 Preliminaries

RPMDRUN is a Volume,Temperature (V,T)-Replica Exchange Molecular Dynamics
(VTREMD) simulation program. It can be used to perform simulations of an arbitrarily
shaped extended ensemble of states in the V,T-plane, such as:

• Sampling along a line of isochoric states.

• Sampling along a line of isobaric states (which have to be identified in a preceding in-
dependent simulation run).

• Sampling the entire V,T-plane using a grid of states.

• Multiplexed-Replica Exchange of one of the above.

RPMDRUN is based on the GROMACS 3.2.1 simulation package [1] http://www.
gromacs.org . For further details concerning the forcefield, the simulation setup, bound-
ary conditions, treatment of long range electrostatics,. . . etc, I would like to refer to the excel-
lent original GROMACS Manual [2]. This little HOWTO just deals with aspects related to
VTREMD simulations.

1.1 Contact

Dr. Dietmar Paschek
Physikalische Chemie II a
Universität Dortmund
Otto-Hahn Str. 6
D-44221 Dortmund, Germany
Tel: ++49-231-755-3938
Fax: ++49-231-755-3937
Email: dietmar.paschek@udo.edu

1.2 Disclaimer

RPMDRUN is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License (GPL) as published
by the Free Software Foundation (See file COPYING for details). The
program and and this mini-HOWTO are distributed in the hope that they
will be useful, but

WITHOUT ANY WARRANTY!

1.3 Acknowledgment

RPMDRUN has been developed during a two month stay at Angel García’s group (T-10 Di-
vision) at Los Alamos National Laboratory (LANL) spring 2004. I would like to thank Angel
and his group for their hospitality. Financial support from the Center for Nonlinear Studies
at LANL, as well as from the Deutsche Forschungsgemeinschaft (DFG FOR436) is gratefully
acknowledged.
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2 Installation

2.1 The Sources

I provide the sources and example applications for the RPMDRUN program on my website:

http://ganter.chemie.uni-dortmund.de/~pas

At the moment, however, the access is limited and will require a password. The password is
available on request. RPMDRUN is based on GROMACS 3.2.1, which can be obtained from
the GROMACS web site http://www.gromacs.org . Please install the GROMACS package
first. Afterward unpack the RPMDRUN package in subdir gromacs-3.2.1/src/ . Install
the GROMACS package as a non-parallel version, otherwise interference with the VTREMD
code might be caused. The new directory replica contains the RPMDRUN sources. Switch
to that directory, and run “make”. Eventually the Makefile has to be modified to match the
requirements of your local installation (I am sorry for the inconvenience).

Please note: In order to run the example applications and any real world production sim-
ulations in an efficient manner, you will find it extremely helpful to have the MOSCITO simu-
lation package, as well as the REPLICA simulation package, installed. Both are also available
from my website. The packages contain certain programs and Perl-scripts which are used to
prepare and monitor the simulation runs. The installation procedure for theses programs is
described elsewhere [3]. Since REPLICA is based on MOSCITO, install MOSCITO first.

2.2 The Parallel Environment

A VTREMD simulation obviously requires a parallel environment. The RPMDRUN-code
is written in MPI. Since I have made good experiences with the LAM MPI implementation
(available from http://www.lam-mpi.org/ ), the given examples will assume using LAM.
However, switching to any other MPI implementation will require only very minor modifica-
tions.

3 VTREMD-Background

3.1 Motivation

Parallel tempering is a rather new and elegant way to enhance sampling of states which can-
not be sampled efficiently otherwise, such as systems exhibiting large barriers or glassy states
[4]. Moreover, parallel tempering has also become a useful strategy for bio-molecular simu-
lations (in the form of replica exchange molecular dynamics), e.g. to determine the folding
transition of proteins [5]. The methodological advantage is that a protein can explore a dif-
ferent number of possible folding pathways at the same time and can overcome barriers or
trapped states at higher temperatures. In general, the sampling is enhanced by a simulta-
neous consideration of different states and by introduction of temperature swapping moves
[6, 7].

However, for the biophysics of many systems and living organisms the pressure is also a
relevant parameter. So, many proteins are stable and stay functional only in a limited tem-
perature and pressure interval [8]. Therefore it might be fruitful to consider also moves where
density changes are involved, thus representing an extended ensemble of states covering a
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large temperature and pressure range. A successful demonstration involving the reversible
temperature and pressure denaturation of a protein fragment has been recently given by us
[9].

3.2 VTREMD-Algorithm

In this section a the acceptance rule for parallel tempering state swapping moves involving
volumes changes is derived. Let us consider an extended ensemble of n states. Each state
i represents a canonical ensemble characterized by a certain temperature Ti and volume Vi.
The partition function for the extended ensemble is the product of all individual N,Vi, Ti

ensembles

Qext. =

n∏
i=1

Q(N,Vi, Ti)

=

n∏
i=1

VN
i

Λ3N
i N!

∫
d~sN

i exp
[
−βiU(~sN

i ; Li)
]

(1)

where βi = 1/kBTi and ~sN = L−1~rN (with L = V1/3 being the length of a hypothetical cubic
box) represent the scaled coordinates of particle N. ~sN

i represents the set of coordinates of the
entire N-particle system belonging to state i. U(~sN

i ; Li) and Vi denote the potential energy and
volume of system i, respectively. The probability density N to obtain a system ~sN

i at a certain
state (Ti, Vi) is given by

N(~sN
i , Vi, βi) =

exp
[
−βiU(~sN

i ; Li)
]∫

d~sN
i exp

[
−βiU(~sN

i ; Li)
] . (2)

To sample this extended ensemble it is in principle sufficient to to perform NVT simulations
of all individual ensembles separately. However, it is also possible (and advantageous) to
introduce Monte Carlo moves swapping two states. Let us consider two states i and j, repre-
sented by (N,βi, Vi) and (N,βj, Vj). The acceptance rule for a swap between two ensembles
i and j follows from the condition of detailed balance

N(~sN
i , Vi, βi)N(~sN

j , Vj, βj)

×α
[
(~sN

i , Vi, βi), (~s
N
j , Vj, βj) → (~sN

j , Vi, βi), (~s
N
i , Vj, βj)

]
×acc

[
(~sN

i , Vi, βi), (~s
N
j , Vj, βj) → (~sN

j , Vi, βi), (~s
N
i , Vj, βj)

]
=

N(~sN
i , Vj, βj)N(~sN

j , Vi, βi) (3)

×α
[
(~sN

i , Vj, βj), (~s
N
j , Vi, βi) → (~sN

j , Vj, βj), (~s
N
i , Vi, βi)

]
×acc

[
(~sN

i , Vj, βj), (~s
N
j , Vi, βi) → (~sN

j , Vj, βj), (~s
N
i , Vi, βi)

]
.

where α [. . .] represents the a priori probability for a given state-swapping move and acc [. . .]

denotes the acceptance ratio. If we construct the Monte Carlo state-swapping move in such a
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way that the a priori probability α [. . .] is equal for all conditions, we obtain as acceptance rule

acc
[
(~sN

i , Vi, βi), (~s
N
j , Vj, βj) → (~sN

j , Vi, βi), (~s
N
i , Vj, βj)

]
acc

[
(~sN

i , Vj, βj), (~s
N
j , Vi, βi) → (~sN

j , Vj, βj), (~s
N
i , Vi, βi)

]
=

exp
[
−βiU(~sN

j ; Li) − βjU(~sN
i ; Lj)

]
exp

[
−βiU(~sN

i ; Li) − βjU(~sN
j ; Lj)

] . (4)

So the acceptance probability for a state swapping move finally turns up to be

Pacc = min{1, exp[βi

(
U(~sN

i ; Li) − U(~sN
j ; Li)

)
+βj

(
U(~sN

j ; Lj) − U(~sN
i ; Lj)

)
]} .

The volume change is usually performed in such a way that only intermolecular distances
are changing, hence only the center of mass coordinates are scaled. Since we obtain the pres-
sure during the molecular dynamics (MD) simulation routinely and given that we consider
only small volume changes, we approximate the energy

U(~sN
j ; Li) ≈ U(~sN

j ; Lj) − (Pj −
M

β ′
jVj

)× (Vi − Vj) (5)

and

U(~sN
i ; Lj) ≈ U(~sN

i ; Li) − (Pi −
M

β ′
iVi

)× (Vj − Vi) , (6)

where M represents the number of the molecules in the simulation box. Here β ′ represents
the instantaneous temperature, whereas β denotes the average temperature characterizing the
states i and j.

In order to provide equal a priori probabilities and to thus fulfill the detailed balance con-
dition, the decision whether a state swapping move, or an MD move is executed, has to be
chosen at random.

There is a certain probability that a state swapping move might be reversed in the succes-
sive step. Therefore it is important to adjust the energies U(~sN

j ; Li) and U(~sN
i ; Lj) after each

successful volume exchange to ensure a proper evaluation of the acceptance probabilities.

4 Running a VTREMD Simulation

The rpmdrun program is essentially a VTREMD version of GROMACS’ original mdrun .
However, the VTREMD capabilities require some modifications and extensions. First, there
are two additional input files: replica.gmx and replica.mdx . replica.gmx is used to
setup the extended ensemble of states. The other one, replica.mdx , incorporates an addi-
tional concept into GROMACS: Sites that are belonging to a certain molecule (not a residue).
Knowing about molecules is important for density scaling, since only intermolecular dis-
tances are supposed to change. In addition, for each replica there have to be separate input-
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and output-files. Therefore RPMDRUN identifies each replica by its particular replica-id.
Keep in mind that rpmdrun reads from and writes to files that are located in present working
directory. Please note, that when using a large number of replicas, the number of files in the
working directory might exceed several thousands or even ten-thousands. Please make sure
that your file-system supports such a large number of files in one directory. Of course, a huge
amount of free disk-space should be available as well.

4.1 The Extended Ensemble and the Replica-Exchange Connectivity Table:
replica.gmx and replica.gmx_out

The extended ensemble of considered states and the replica-exchange connectivity table are
contained in replica.gmx (see Figure 1). The states are defined by their density and
reference temperature and the state-exchange table identifies replicas between which state-
exchange-moves shall be attempted.

The first line in replica.gmx defines the probability to attempt a state-swapping move.
Using a value 0.002, on average after every 500’th MD-step, a state-swapping move will be
attempted. However, the number of MD-timesteps between two state-swapping attempts
might vary, since the decision, whether a state-swapping move is attempted or a MD move
is executed, is chosen at random. The value specified in the following line defines how often
a state-swapping attempt will be repeated for each try. Usually, one would set this value to
one, meaning that there will be only one try per state-swapping move. However, when deal-
ing with a very large number of replicas, it might be advantageous to use a larger number
here (in order to try several subsequents attempts), while using a smaller value for the ex-
change probability. This feature might be also be of use when realizing a multiplexed REMD
state-topology [10]. In the next line, the number of replicas n used in the actual simulation
is given. The following n lines define the actual replicas by their replica-id, their initial tem-
perature (in K) and their density (in g cm−3). What follows is the replica connectivity-table.

0.002
1
6
0 300.0 1.000
1 305.0 1.000
2 310.0 1.000
3 315.0 1.000
4 320.0 1.000
5 325.0 1.000
5
0 1 1.0
1 2 1.0
2 3 1.0
3 4 1.0
4 5 1.0

Figure 1: Example replica.gmx –file for an (unrealistically small) extended ensemble of 6 (isochoric)
states. For simplicity, the temperature difference between all states has been chosen to be constant. In a
realistic simulation one would adjust the temperature differences to maintain a certain state-swapping
acceptance ratio.
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0.002000
1
6
0 300.00 1.0000
1 305.00 1.0000
2 310.00 1.0000
3 320.00 1.0000
4 315.00 1.0000
5 325.00 1.0000
5
0 1 1.000000
1 2 1.000000
2 4 1.000000
4 3 1.000000
3 5 1.000000

Figure 2: Example replica.gmx_out –file for the extended ensemble of 6 (isochoric) states after one
successful state-swapping move. Please note, that ’replica 3’ has now a temperature of 320 K, whereas
’replica 4’ is at 315 K. Please note also the change in the replica-connectivity table. replica.gmx_out
has to be renamed to replica.gmx in order to be able to continue the simulation successfully.

#!/bin/sh
cat >REPLICA.def<<EOF
ATTEMPTS 1
PROB 0.002
TEMP 300.0 # 1
TEMP 305.0 # 2
TEMP 310.0 # 3
TEMP 315.0 # 4
TEMP 320.0 # 5
TEMP 325.0 # 6
RHO 1.000
EOF
r_mkgmx.pl < REPLICA.def > replica.gmx

Figure 3: Shown is a small shell-script, creating the replica.gmx -file given in Figure 1.

Suppose there are m connectivities, consequently this number m is specified by the first line
of the connectivity-table. The following data are the m pairs of replica-ids between which
state-swapping shall be attempted. The value in the third row specifies an additional execu-
tion probability for such an attempt. The idea is to provide a possibility to balance between
different kinds of moves such as temperature- and density-swaps. At the moment, however,
this feature is disabled.

During the course of the replica simulation, eventually state exchanges between replica
occur (it hopefully happens, since state-exchange is what REMD is all about) and therefore
the replica-definition and the replica connectivity-table change. In order to be able to con-
tinue a simulation run, the final status of the replica-simulation is written to a new file called
replica.gmx_out (see Figure 2) when closing down the actual simulation run.

Imagine you wish to run a large replica simulation, sampling a large patch of the entire
V,T-plane of a liquid solution. A lot of states have to be defined, and particularly setting up
the replica-connectivity map by hand might become a tiresome task. Henceforth, a Perl-script
r_mkgmx.pl is provided, used to create an initial replica.gmx -file from a minimal set of
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#!/bin/sh
cat >REPLICA.def<<EOF
ATTEMPTS 1
PROB 0.002
EOF
r_tempscale -t0 300.0 -dt0 5.0 -dt1 6.0 -n 6 >> REPLICA.def
r_rhoscale -r0 1.0 -dr0 0.01 -dr1 0.015 -n 6 >> REPLICA.def
r_mkgmx.pl < REPLICA.def > replica.gmx

Figure 4: Shown is a small shell-script creating the replica.gmx -file defining a six (temperature)
times six (density) matrix of states with nearest neighbor state-swapping. Temperature sequence:
300.0, 305.0, 310.2, 315.6, 321.2, 327.0. Density sequence: 1.000, 1.010, 1.021, 1.033, 1.046, 1.060.

information defined by a set of keywords contained in a file, typically (but not necessarily)
called REPLICA.def .

r_mkgmx.pl < REPLICA.def > replica.gmx

An example is given in Figure 3. r_mkgmx.pl always defines a grid of V,T-states (or an iso-
choric, or isothermal line of states) defined by their temperature (keyword: TEMP) and den-
sity (keyword: RHO). The state-swapping attempt probability is given by the PROB keyword
and the number of attempts by ATTEMPTS. Please note, that this procedure can, of course,
not be employed to attempt sampling along an isochoric line or for Multiplexed-Replica ex-
change. Perhaps, more elaborate scripts addressing the above mentioned problems, might
appear soon.

In order to make creating an initial temperature- and density-tiling for REPLICA.def a
little bit easier, there are two more Perl-scripts available, generating temperature and density
sequences suitable for REPLICA.def : r_rtempscale.pl and r_rhoscale.pl (an exam-
ple is given in Figure 4).

r_tempscale.pl -t0 300.0 -dt0 5.0 -dt1 6.0 -n 6
r_rhoscale.pl -r0 1.0 -dr0 0.01 -dr1 0.015 -n 6

Here -n defines the number of created temperatures/densities, while -t0 and -r0 de-
fine the first temperature and density values in the sequence. -dt0 and -dr0 define
the (starting) temperature/density-increment, whereas -dt1 and -dr1 define the final
temperature/density-increment. The increment is supposed to change linearly. However,
these scripts are probably used just as a first guess, or to prepare a trial simulation. A more
elaborate temperature-tiling will require the knowledge of the potential energy-distribution
of the particular system as a function of temperature. Typically, the temperature tiling is cho-
sen to ensure sufficiently overlapping energy distributions. Usually this is done in such a way
to maintain a certain acceptance ratio of about, say, 20 per cent.

4.2 The Site-Molecule Definition: replica.mdx

replica.mdx introduces an additional concept to GROMACS: Sites that are belonging to
a certain molecule (not residue). Knowing about molecules is important for density scaling,
since only intermolecular distances are supposed to change. The chosen file-format is actually
extremely simple. The first line contains the number of atoms in the actual simulation, whereas
the following line denotes the number of molecules. For each atom in the simulation there is a
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new line and each line contains an integer number specifying the actual molecule to which the
atom belongs. Creating such a file by hand might be a tedious and error-prone task. Therefore
a small Perl-script r_mkmdx.pl is provided:

r_mkmdx.pl -mols0 1 -sites0 156 -mols1 2644 -sites1 3 > replica.mdx

The example given above represents a simulation of a single protein (with 156 sites) dissolved
by 2644 water molecules (each represented by three sites). Additional molecules might be
introduced by further -sites2 and -mols2 , . . . etc., options. The specifications given above
have to be tailored to every new simulation. However, the rpmdrun -program will check for
inconsistencies with respect to the definitions given in the topology-file.

4.3 Addressing Input-/Output-Files by their Replica- id

For each replica there have to be separate input and output-files. RPMDRUN reads and writes
data directly to the present working directory. Therefore, to avoid file-name conflicts, each
replica adds automatically six characters to the beginning of each file-name: A ’R’, followed
by the replica-id in a %00004d-format, followed by a ’_’. The rest of the file names can (and
should) be defined when calling rpmdrun . An example is given in Figure 5. The input-
/output-files can be discussed just briefly here. For more detailed information, please take
a look at the GROMACS manual [2]. The thermodynamical properties for each replica are
stored in the .edr -files, and the system trajectory (atom-coordinates as a function of time)
are stored in the .xtc -files. 1 The GROMACS program g_energy might be used to extract

1.edr - and .xtc -files are based the XDRF-library [11], which stores molecular structure data in a very efficient
manner by making use of correlations between the atoms and by limiting the accuracy to about 0.5 pm. An
entire coordinate triple (x,y,z) consumes thus just about 3.5 to 4 bytes on average. The xtc-format is supported
by a number of programs, such as the recent versions of VMD [12] and MOSCITO [3]. The binary data in

>mpirun -c 6 rpmdrun -x sim1.xtc -o sim1.trr -c sim1.gro -e sim1.edr -g sim1.log
>ls R*.sim1.*
R0000_sim1.edr
R0000_sim1.edr_pte
R0000_sim1.gro
R0000_sim1.log
R0000_sim1.trr
R0000_sim1.xtc
R0000_sim1.xtc_pte
R0000_sim1out.mdp
R0001_sim1.edr
R0001_sim1.edr_pte
R0001_sim1.gro
R0001_sim1.log
R0001_sim1.trr
R0001_sim1.xtc
R0001_sim1.xtc_pte

.

.

.
R0005_sim1.edr
R0005_sim1.edr_pte
R0005_sim1.gro
R0005_sim1.log
R0005_sim1.trr
R0005_sim1.xtc
R0005_sim1.xtc_pte

Figure 5: Example of a 6-replica simulation run as obtained by calling rpmdrun . The output-filenames
are specified at the command-line. The rpmdrun -STDOUT-output has been discarded for clarity.
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>grompp -f SIM.mdp -p SIM.top -c R0000_sim0.gro -po R0000_sim1.mdp_out -o R0000_STRT.tpr
>grompp -f SIM.mdp -p SIM.top -c R0001_sim0.gro -po R0001_sim1.mdp_out -o R0001_STRT.tpr
>grompp -f SIM.mdp -p SIM.top -c R0002_sim0.gro -po R0002_sim1.mdp_out -o R0002_STRT.tpr
>grompp -f SIM.mdp -p SIM.top -c R0003_sim0.gro -po R0003_sim1.mdp_out -o R0003_STRT.tpr
>grompp -f SIM.mdp -p SIM.top -c R0004_sim0.gro -po R0004_sim1.mdp_out -o R0004_STRT.tpr
>grompp -f SIM.mdp -p SIM.top -c R0005_sim0.gro -po R0005_sim1.mdp_out -o R0005_STRT.tpr
>ls R*.tpr
R0000_STRT.tpr
R0001_STRT.tpr
R0002_STRT.tpr
R0003_STRT.tpr
R0004_STRT.tpr
R0005_STRT.tpr

Figure 6: Each replica requires its own particular startup-file (.tpr -file) which contains the definition
for an entire (replica) simulation run, including topology/forcefield information, initial coordinates
and velocities, as well as the simulation run setup. The binary .tpr -file has to be created by using
the conventional GROMACS preprocessor grompp . grompp uses three different input sources: (1)
The .mdp -file, containing the run-setup. (2) The .gro -file (the native Gromos87 format), holding the
coordinates and velocities of the final configuration of a preceding simulation run. (3) The .top -file,
containing the topology and forcefield. The startup-file for each replica-id requires (!) the fixed format
name: R####_STRT.tpr . The grompp -STDOUT-output has been discarded for clarity.

data from an .edr -file. The .gro - and .trr -files contain the atom coordinates and velocities
for the final configuration. The .gro -format is the generic Gromos87 ASCII-format, whereas
the .trr -file has a GROMACS specific binary format. Usually ,I prefer to restart a simulation
from a .gro -file, since all counters etc. are then automatically set to zero. Finally, the .log -
file contains information on the simulation run, such as averages and timings in a human
readable form.

Whereas the names for the output-files can be specified at the command line, the name
of the input-file is fixed. Each replica reads the configuration of the entire simulation run,
including the run-setup, the forcefield and molecule-topologies, as well as the initial coor-
dinates and velocities from one particular binary input-file called R####_STRT.tpr (it is
not a typo, it is really STRT). Therefore, before being able to start the VTREMD-run, such
an input-file has to be created for each replica. For this purpose, GROMACS provides the
GROMACS-preprocessor grompp . grompp is intermingling three different sources by pro-
cessing a topology .top -file, containing the forcefield, a restart configuration (typically con-
tained in a .gro -file), and a .mdp -file, holding the setup (time-step, Ewald-setup, output-
frequency) for the entire MD-run. Since all replica-runs should, of course, be configured
identically, there should be just one .top - and .mdp -file. Figure 6 exemplifies the input-file
preparation for a 6-replica simulation run. grompp will produce considerable output, and
eventually warnings and error-messages. In addition, an extensively detailed, processed ver-
sion of the .mdp -file is written to the file specified by the -po -option.

4.4 Replica-State Trajectory-Protocol Files: .xtc_pte and .edr_pte

In order to provide a protocol for the VTREMD-simulation and to be able to assign the stored
configurations and thermodynamical/energetical data of each of the individual replicas to
their corresponding states, rpmdrun always creates two additional so-called ’PTE’-files. (PTE

XDRF-files is stored in a hardware independent way and allows interchange of data between big- and little-
endian machines.
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1000 296.42111206 -106067.67187500 20302.11523438 -56.05250931 T 300.0 R 0.960
2000 304.36569214 -106193.09375000 20846.24609375 -39.49655533 T 300.0 R 0.960
3000 295.61325073 -105746.89843750 20246.78320312 -74.47006989 T 300.0 R 0.960
4000 295.22518921 -106338.10156250 20220.20507812 -44.83750534 T 300.0 R 0.980
5000 296.44931030 -106217.46093750 20304.04687500 -2.97017622 T 300.0 R 0.980
6000 304.13015747 -106413.78906250 20830.11328125 -13.73261642 T 300.0 R 0.980
7000 295.76913452 -106426.27343750 20257.46093750 -47.76762390 T 300.0 R 0.980
8000 296.79498291 -107209.78125000 20327.72070312 -55.09703445 T 300.0 R 0.980
9000 299.71136475 -106004.05468750 20527.46679688 -15.42340279 T 300.0 R 0.980

10000 302.69570923 -106578.67187500 20731.86718750 -12.33014297 T 300.0 R 0.980
11000 298.35388184 -106640.51562500 20434.49218750 3.01580453 T 300.0 R 0.980
12000 303.08145142 -106655.57812500 20758.28710938 -17.05986977 T 300.0 R 0.980
13000 305.81127930 -105773.40625000 20945.25390625 10.96167374 T 304.5 R 0.980
13000 305.81127930 -105773.40625000 20945.25390625 10.96167374 T 304.5 R 0.980
14000 301.16677856 -106106.89062500 20627.15039062 16.52543259 T 304.5 R 0.980
15000 303.30520630 -106170.78125000 20773.61132812 -17.04383850 T 304.5 R 0.980
16000 301.62588501 -105919.75781250 20658.59375000 -15.34104824 T 304.5 R 0.980
17000 304.10519409 -106192.64062500 20828.40429688 24.53301430 T 304.5 R 0.980
18000 303.90145874 -106735.03125000 20814.44921875 41.20051193 T 304.5 R 1.000
19000 314.30288696 -105446.15625000 21526.85156250 20.68351364 T 313.7 R 1.000
20000 314.05596924 -105031.68750000 21509.93945312 -4.26713705 T 313.7 R 1.000
21000 314.82305908 -106141.62500000 21562.47851562 21.09751892 T 313.7 R 1.000
22000 316.67568970 -105588.36718750 21689.36718750 68.60745239 T 313.7 R 1.000

Figure 7: Excerpt from a PTE-file. The first column specifies the actual time-step. The second column
holds the instantaneous temperature (in K). The third column specifies the configurational (potential)
energy (in kJ mol−1). The fourth column contains the kinetic energy (in kJ mol−1) and the fifth column
contains the pressure (in MPa). The last columns define actually the state by its target temperature (in
K) and density (in g cm−3) with a preceding ’T ’ and ’R ’, respectively.

stands for pressure, temperature, energy). For each configuration written to the .xtc - or
.edr -file the current state is written to the corresponding PTE-file. thus that the data in the
both files can be reassigned to the proper state. The PTE-filename is alway specified by adding
the sub-extension ’_pte ’ to filenames of the corresponding .xtc and .edr -files. An example
PTE-file is shown in Figure 7. Further detailed information on the exact file-format and the
contained data is given in the corresponding figure-caption.

4.5 Generating Start Configurations for All Replicas

Creating all the start-configurations by hand might be an error-prone procedure when a
large number of replicas is involved and the density varies. Therefore a small Perl-script
r_mkgro.pl is provided

r_mkgro.pl -gro startconf.gro < REPLICA.def

that creates a start configuration with the correct density for each replica. The information is

>r_mkgro.pl -gro startconf.gro < REPLICA.def
>ls R*.START.*
R0000_START.gro
R0001_START.gro
R0002_START.gro
R0003_START.gro
R0004_START.gro
R0005_START.gro

Figure 8: r_mkgro.pl prepares the start configuration for all replica according to the dfinition given
in REPLICA.def .
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read from a corresponding REPLICA.def -file. In addition, a seed-configuration is needed,
which is specified by the -gro -option. In order to provide a correct density scaling, the seed-
configuration should exhibit a density of exactly 1.0 g cm−3. The created starting configu-
rations are written to files R####_START.gro . Moreover, r_mkgro.pl writes a protocol,
containing replica-id, temperature and density to STDOUT. An example application is given
in Figure 8.

4.6 Recommendations and Suggestions for .mdp-Files When Using
RPMDRUN

An example .mdp -file specifying the MD-setup for a typical VTREMD-simulation used by us
is given in Figure 9. I would like to emphasize on some obvious and some probably not so
obvious points:

1. Unless you perform just a short equilibration simulation, coordinates and energies
should be written only to .xtc - and .edr -files, since just for them the corresponding
PTE-files are available. Please, set nstxout to zero and use in any case the more compact
xtc-format (nstxtcout).

2. A timesteps of 2.0 fs are usually feasible for the considered typical temperature range
between 280 K to 550 K. When flexible molecules with fixed-hydrogens are involved, it

; Input file
;
title = Yo ; a string
cpp = /lib/cpp ; c-preprocessor
dt = 0.002 ; time step
nsteps = 250000 ; number of steps
nstcomm = 1 ; reset c.o.m. motion
nstxout = 0 ; write no coords
nstxtcout = 1000 ; write compat coords to xtc-file
nstvout = 0 ; write no velocities
nstlog = 50000 ; print to logfile
nstenergy = 100 ; print energies
nstlist = 6 ; update pairlist
ns_type = grid ; pairlist method
coulombtype = pme ; use particle-mesh Ewald
fourier_nx = 36 ; use a fixed rec.-space lattice
fourier_ny = 36
fourier_nz = 36
pmeorder = 4
ewald_rtol = 1.0e-5
DispCorr = EnerPres
constraint_algorithm= shake
shake_tol = 1.0e-4
rlist = 0.9 ; cut-off for ns
rvdw = 0.9 ; cut-off for vdw
rcoulomb = 0.9 ; cut-off for coulomb
Tcoupl = nose-hoover ; temperature coupling: Use Nose-Hoover
ref_t = 300.0
tc-grps = System
tau_t = 0.5
Pcoupl = berendsen ; Enable pressure bath swith although not used
Pcoupltype = isotropic ; pressure geometry is necessary
tau_p = 4.0 ; p-coupoling time is necessary
compressibility = 4.5e-5 ;
ref_p = 1.0 ;
gen_vel = no ; generate initial velocities
gen_temp = 300 ; initial temperature
gen_seed = 1993 ; random seed

Figure 9: An example .mdp -file as used recently for a VTREMD simulation.

11



is sometimes useful to consider the -heavyh -option when preparing the protein topol-
ogy.

3. When density-swaps are possible (VTREMD), choose a setup for the PME-reciprocal
lattice that achieves an appropriate accuracy for the whole considered density range.
Please note: Define the PME-lattice explicitly by the fourier_nx... keywords. Oth-
erwise grompp might probably choose different lattice setups just based on the box-
dimensions of the initial configurations. It is certainly more consistent to provide fully
identical conditions for all replicas.

4. The pressure-coupling MUST be enabled (!!!!) although each replica simulation is in fact
conducted in the NVT-ensemble. However, it is important for GROMACS to know, that
box sizes (e.g. when replicas are exchanging their states) might vary.

5. I strongly recommend the use of the Nosé-Hoover thermostat, since it generates a
proper canonical ensemble of states. The VTREMD-algorithm is basically derived as-
suming a canonical distribution. Moreover, the Berendsen-algorithm tends to introduce
a coupling-time dependence to the width of the configurational energy distribution.
This might be particularly inconvenient when setting up a VTREMD-simulation, and
might influence the physics as well.
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5 An Example Application: The AK-peptide

This part provides some details on the preconfigured simulation runs that are available from
my website http://ganter.chemie.uni-dortmund.de/~pas/rpmdrun_demo.tgz .
In this section, however, I will focus on just one particular application: the REMD simula-
tion of the helical 20-residue AK-peptide in an explicit solvent. More information on the
AK-peptide can be found in a recent paper by Gnanakaran et al. [13].

5.1 Creating the Forcefield and the Initial Configuration

The subdir RPMDRUN_DEMO/AK_DEMO/buildcontains actually three shell scripts, shown in
Figures 10 and 11. The scripts can be used to setup the topology-files and initial configurations
of the solvated α-helical AK-peptide.

mkpdb.sh uses the tleap program (which is part of the AMBER simulation package
and not free available) to generate a pdf-file for the 20-residue AK-peptide in an α-helical
conformation. In case that tleap is not available, a copy of the pdb-file can be found in

#!/bin/sh
LEAPROOT=~/LEAP
cat > leaprc <<EOF
#
parm94 = loadAmberParams "parm94.dat"
loadOff all_amino94.lib
loadOff all_aminont94.lib
loadOff all_aminoct94.lib
#
U=sequence { ALA ALA LYS ALA ALA }
AKpeptide=sequence { ALA ALA U U U ALA ALA TYR }
impose AKpeptide { { 1 999 } } { { N CA C N -40.0 } { C N CA C -60.0 } }
savepdb AKpeptide AKpeptide.pdb
quit
EOF
tleap

Figure 10: mkpdb.sh uses Leap (which is part of the AMBER simulation package) to create a pdb-file
for the 20 residue AK peptide with sequence AA − (AAKAA)3AAY in an α-helical conformation.

#!/bin/sh
echo 1 1 | pdb2gmx -ff G43a1 -ignh -ter -water spc -n akp.ndx \

-o akp.gro -p akpaq.top -i akp.itp -f AKpeptide.pdb -q akp.pdb
editconf -f akp.gro -o akpc.gro -box 4.35 4.35 4.35
genbox -box 4.35 4.35 4.35 -cp akpc.gro -cs spc216.gro -p akpaq.top -o akpaq.gro

#!/bin/sh
echo 1 1 | pdb2gmx -ff oplsaa -ignh -ter -water tip3p -n akp.ndx \

-o akp.gro -p akpaq.top -i akp.itp -f AKpeptide.pdb -q akp.pdb
editconf -f akp.gro -o akpc.gro -box 4.35 4.35 4.35
genbox -box 4.35 4.35 4.35 -cp akpc.gro -cs spc216.gro -p akpaq.top -o akpaq.gro

Figure 11: Top: mktop_g96.sh . Bottom: mktop_opls.sh . Both shell scripts generate topology
files for the solvated AK-peptide located in a 4.35 nm simulation box. Roughly 2650 water molecules
are represent the solvent phase. Top: The peptide is represented by Gromos96-Forcefield using the
SPC-model for water. Bottom: The peptide is represented by OPLS(AA)-Forcefield using the TIP3P-
model for water.
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RPMDRUN_DEMO/AK_DEMO/pdb. The file AKpeptide.pdb is holding the entire peptide con-
figuration.

In order to prepare the topology-files and the start-configuration, preconfigured scripts
are available for either generating an OPLS all-atom model of the AK-peptide solvated in
TIP3P water, or an Gromos96-model of the peptide using the SPC-model as solvent. The
two shell-scripts are shown in Figure 11. Detailed information on the individual programs
is given in the GROMACS manual [2]. Basically two files are created: akpaq.top contains
the complete peptide/solvent topology-information, whereas akpag.gro holds the initial
structure of the solvated protein in the generic Gromos87 format. akpag.gro can be loaded
into VMD [12] to visualize the configuration. In addition, the file ak.gro contains just the
peptide configuration without any solvent.

5.2 Running an Entire REMD-Simulation

Before attempting to run one the shell-scripts, make sure you have installed all the MOSC-
ITO, REPLICA, GROMACS and RPMDRUN programs and that the executables are available
in your actual PATH. Before starting the shell-scripts in the RPMDRUN_DEMO/AK_DEMO/run
subdirectory, add the names of the actual nodes, you wish to run the programs on, to
run/machine.pas . Remember to log to one of the nodes before starting any jobs. A com-
plete entire simulation run will be executed by calling RUNSIM.sh . So, in principle you can
just start ’RUNSIM.sh’, contained in this directory. Nevertheless, I would encourage you to
execute the commands listed in RUNSIM.sh step by step in order to see what the shell-scripts
and programs are doing.

5.2.1 Defining States and Preparing the Simulation

The REMD simulation run is actually prepared by calling two shell-scripts: mk_def.sh and
init_gmx.sh . Both are shown in Figures 13 and 14. When calling mk_def.sh , the state-
swapping attempt probability is passed to the shell-script as an argument. In addition, the
number of REPLICAS for the present simulation is defined here. It is explicitly defined by
calling

./r_tempscale_AK_TIP3P.pl -t0 300 -n 2 >> REPLICA.def

For the very first small test case, I have limited the number of replicas just to two, which
might be sufficient to check whether the program works. In case you have more com-
puter power (nodes) available, you might enlarge this number. Therefore you have to edit

#!/bin/sh
./mk_def.sh 0.0 # No replica exchange
./init_gmx.sh # Prepare startup files
lamboot -v machines.pas # Boot LAM
./do_min.sh # Energy minimization
./do_eq0.sh # Equilibration run without replica exchange
./mk_def.sh 0.01 # Attempt exchange moves with a probability of 0.01
r_mkgmx.pl < REPLICA.def > replica.gmx_out
./do_sim.sh 1 2 # Two successive simulation runs
wipe -v machines.pas # Shutdown LAM

Figure 12: RUNSIM.sh performs the entire replica-exchange simulation run, including an initial en-
ergy minimization, an equilibration run, and two successive production runs.
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#!/bin/sh
echo ’ATTEMPTS 1’ > REPLICA.def
echo ’PROB ’ $1 >> REPLICA.def
#./r_tempscale_AK_SPC.pl -t0 300 -n 6 >> REPLICA.def
./r_tempscale_AK_TIP3P.pl -t0 300 -n 2 >> REPLICA.def
#r_tempscale.pl -t0 300 -dt0 5 -dt1 5 -n 6 >> REPLICA.def
#r_rhoscale.pl -r0 0.960 -dr0 0.02 -dr1 0.02 -n 11 >> REPLICA.def
echo ’RHO 1.000’ >> REPLICA.def

Figure 13: mk_def.sh creates a file REPLICA.def used to prepare the replica.gmx -file for the
initial RPMDRUN simulation. mk_def.sh has to be called with a value defining the probability to
attempt state-exchange moves.

#!/bin/sh

cat ../build/akpaq.gro | changedens_gmx 1.004707053 > akpaq.gro
/bin/cp ../build/akpaq.top .

r_mkgmx.pl < REPLICA.def > replica.gmx
r_mkgro.pl -gro akpaq.gro < REPLICA.def

nsites0=‘cat ../build/akp.gro | head -2 | tail -1‘
nmols1=‘cat akpaq.gro | grep SOL | grep OW | wc -l‘
r_mkmdx.pl -mols0 1 -sites0 $nsites0 -mols1 $nmols1 -sites1 3 > replica.mdx

Figure 14: init_gmx.sh prepares the entire simulation run by (1) copying the topology-file to
the actual directory; (2) preparing replica.gmx and replica.mdx ; (3) creating the initial start-
configurations for each replica.

mkdef.sh (see Figure 13). The number of REPLICAS and the indicated lowest tempera-
ture define the actual temperature range. The scripts r_tempscale_AK_TIP3P.pl and
r_tempscale_AK_SPC.pl have been fitted to a simulations of the AK-peptide in 2666 water
(SPC, or TIP3P) molecules. In the following step, init_gmx.sh creates the input files for the
rpmdrun program. You have probably noticed that in RUNSIM.sh (Figure 12), mk_def.sh
is called with ’0.0’ as argument, indicating that replica-exchange is basically switched off. The
reason for this is that do_min.sh is calling an energy minimization run. The steepest descent
energy-minimization is actually performed by rpmdrun . The state-exchange wouldn’t make
any sense in this stage.a Before rpmdrun can be started, the entire parallel environment has
to be set up, which is done by calling the lamboot command, as shown in Figure 12. The
setup of the energy minimization run is shown in Figure 15.2 Please note the out-commented
call of mdrun in Figure 15. decommenting this line and out-commenting the rpmdrun call
will execute the energy minimization run sequentially for each replica.

5.2.2 Equilibration and Production Run

After a having successfully called do_min.sh , the energy minimized start-configurations are
stored in R####_MIN.gro . These configurations are loaded, when starting the equilibration
run by calling do_eq0.sh . Please note that the same unchanged replica.gmx file is used
here, since no replica exchange was supposed to happen. Again, also for the equilibration run,

2 When preparing a VTREMD-simulation run involving large density changes, I found it useful to to employ a
flexible water model just for the energy minimization step. Another strategy would be to avoid large stress
in the initial configurations by successively increasing the density step by step, while performing a short
equilibration run after each density change.
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no replica exchanges are attempted The equilibration simulation is done with a rather tight-
coupled (τT = −0.2 ps) Berendsen-thermostat. For an equilibration run, there is no need of
generating a proper canonical distribution. Instead, the Berendsen-method might be helpful,
when states are considered that are far away from the equilibrium, since it safely shifts the
system toward the desired-state. Once the equilibration run has been completed, the entire

#!/bin/sh

cat > START.mdp <<EOF

; Input file
;
Integrator = steep
emstep 0.001
emtol 100.0
title = Yo ; a string
cpp = /lib/cpp ; c-preprocessor
dt = 0.002 ; time step
nsteps = 500 ; number of steps
nstcomm = 1 ; reset c.o.m. motion
nstxout = 0 ; write coords
nstxtcout = 100
nstvout = 0 ; write velocities
nstlog = 50 ; print to logfile
nstenergy = 1 ; print energies
nstlist = 2 ; update pairlist
ns_type = grid ; pairlist method
coulombtype = pme
;fourierspacing = 0.1
fourier_nx = 32
fourier_ny = 32
fourier_nz = 32
pmeorder = 4
;optimize_fft = yes
ewald_rtol = 1.0e-5
DispCorr = EnerPres
constraint_algorithm= shake
shake_tol = 1.0e-4
rlist = 0.9 ; cut-off for ns
rvdw = 0.9 ; cut-off for vdw
rcoulomb = 0.9 ; cut-off for coulomb
;Tcoupl = no
;Tcoupl = berendsen ; temperature coupling
;ref_t = 300
;tc-grps = System
;tau_t = 0.1
;Pcoupl = berendsen ; pressure bath
;Pcoupltype = isotropic ; pressure geometry
;tau_p = 1.0 ; p-coupoling time
;compressibility = 4.5e-5
;ref_p = 1.0
;gen_vel = no ; generate initial velocities
;gen_temp = 300 ; initial temperature
gen_seed = 1993 ; random seed

EOF

nodes=‘cat replica.gmx | head -3 | tail -1‘

let stop=$nodes
let stop=stop-1
let i=0
while [ $i -le $stop ]
do
label=‘echo $i | awk ’{printf " R%00004d", $1}’‘
echo $label

grompp -f START.mdp -p akpaq.top -po ${label}_STARTout.mdp -c ${label}_START.gro -o STRT.tpr
/bin/mv STRT.tpr ${label}_STRT.tpr

#mdrun -s ${label}_STRT.tpr -e ${label}_MIN.edr -g ${label}_MIN.log \
# -x ${label}_MIN.xtc -o ${label}_MIN.trr -c ${label}_MIN.gro

let i=i+1
done

mpirun -c $nodes rpmdrun -e MIN.edr -g MIN.log -x MIN.xtc -o MIN.trr -c MIN.gro

Figure 15: do_min.sh performs an energy minimization. This procedure is intended to overcome a
possible unfavorable initial configuration.
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production run is started by calling do_sim.sh (shown in Figure 17). do_sim.sh is called
with two arguments. The start-index and the stop-index of a consecutive series of simulation
runs. ’do_sim.sh 1 10 ’ would produce a series of 10 production runs starting from the
configurations produced by the initial equilibration run.

#!/bin/sh

cat > START.mdp <<EOF

; Input file
;
title = Yo ; a string
cpp = /lib/cpp ; c-preprocessor
dt = 0.002 ; time step
nsteps = 5000 ; number of steps : Increase number of steps here !!
nstcomm = 1 ; reset c.o.m. motion
nstxout = 0 ; write coords
nstxtcout = 0
nstvout = 0 ; write velocities
nstlog = 50 ; print to logfile
nstenergy = 10 ; print energies
nstlist = 6 ; update pairlist
ns_type = grid ; pairlist method
coulombtype = pme
fourier_nx = 36
fourier_ny = 36
fourier_nz = 36
pmeorder = 4
;optimize_fft = yes
ewald_rtol = 1.0e-5
DispCorr = EnerPres
constraint_algorithm= shake
shake_tol = 1.0e-4
rlist = 0.9 ; cut-off for ns
rvdw = 0.9 ; cut-off for vdw
rcoulomb = 0.9 ; cut-off for coulomb
;Tcoupl = no
Tcoupl = berendsen ; temperature coupling : Berensen thermostat used here
ref_t = 300 300
tc-grps = Protein SOL
tau_t = 0.2 0.2 ; tight initial berendsen coupling
Pcoupl = berendsen ; pressure bath
Pcoupltype = isotropic ; pressure geometry
tau_p = 1.0 ; p-coupoling time
compressibility = 4.5e-5
ref_p = 1.0
gen_vel = no ; generate initial velocities
gen_temp = 300 ; initial temperature
gen_seed = 1993 ; random seed

EOF

nodes=‘cat replica.gmx | head -3 | tail -1‘

let stop=$nodes
let stop=stop-1
let i=0
while [ $i -le $stop ]
do
label=‘echo $i | awk ’{printf " R%00004d", $1}’‘
echo $label
/bin/rm -f ${label}_STARTout.mdp
grompp -f START.mdp -p akpaq.top -po ${label}_STARTout.mdp -c ${label}_MIN.gro -o STRT.tpr
/bin/mv STRT.tpr ${label}_STRT.tpr
let i=i+1
done
sleep 5

mpirun -ger -c $nodes rpmdrun -e EQU0.edr -g EQU0.log -x EQU0.xtc -o EQU0.trr -c EQU0.gro

Figure 16: do_eq0.sh executes the equilibration run. Please note that the run is rather short (5000
timesteps). Usually one would use a longer simulation here, of, say 100 ps (50000 timesteps). Please
note also the use of the Berendsen thermostat here. The Berendsen thermostat appears to be better
suited for systems being far from the equilibrium state. For the initial equilibration period, generating
a proper canonical distribution is probably of minor importance.
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#!/bin/sh
start=$1
stop=$2

cat > SIMXX.mdp <<EOF
; Input file
title = Yo ; a string
cpp = /lib/cpp ; c-preprocessor
dt = 0.002 ; time step
nsteps = 2500 ; number of steps: Increase number of steps here !!
nstcomm = 1 ; reset c.o.m. motion
nstxout = 0 ; write coords
nstxtcout = 1000
nstvout = 0 ; write velocities
nstlog = 50000 ; print to logfile
nstenergy = 100 ; print energies
nstlist = 6 ; update pairlist
ns_type = grid ; pairlist method
coulombtype = pme
fourier_nx = 36
fourier_ny = 36
fourier_nz = 36
pmeorder = 4
ewald_rtol = 1.0e-5
DispCorr = EnerPres
constraint_algorithm= shake
shake_tol = 1.0e-4
rlist = 0.9 ; cut-off for ns
rvdw = 0.9 ; cut-off for vdw
rcoulomb = 0.9 ; cut-off for coulomb
Tcoupl = nose-hoover ; temperature coupling
ref_t = 300.0
tc-grps = System
tau_t = 0.5
Pcoupl = berendsen ; pressure bath
;Pcoupl = Parrinello-Rahman ; pressure bath
Pcoupltype = isotropic ; pressure geometry
tau_p = 4.0 ; p-coupoling time
compressibility = 4.5e-5
ref_p = 1.0
gen_vel = no ; generate initial velocities
gen_temp = 300 ; initial temperature
gen_seed = 1993 ; random seed
EOF

nodes=‘cat replica.gmx | head -3 | tail -1‘
let i=$start

while [ $i -le $stop ]
do

let j=i-1
infile=sim${j}.gro
if [ $i -eq 1 ]; then

infile=EQU0.gro
fi
mdpoutfile=sim${i}out.mdp
tprfile=STRT.tpr
xtcfile=sim${i}.xtc
trrfile=sim${i}.trr
edrfile=sim${i}.edr
logfile=sim${i}.log
outfile=sim${i}.gro
/bin/rm -f STRT.tpr *STRT.tpr *out.mdp
/bin/cp replica.gmx_out replica.gmx

let nstop=$nodes
let nstop=nstop-1
let j=0
while [ $j -le $nstop ]
do

label=‘echo $j | awk ’{printf "R%00004d", $1}’‘
echo $label
center_gmx 1 20 < ${label}_$infile > STRT.gro
grompp -f SIMXX.mdp -p akpaq.top -po ${label}_$mdpoutfile -c STRT.gro -o STRT.tpr
/bin/mv STRT.tpr ${label}_STRT.tpr
let j=j+1

done

mpirun -c $nodes rpmdrun -x $xtcfile -o $trrfile -c $outfile -e $edrfile -g $logfile
/bin/cp replica.gmx_out sim${i}.gmx_out

let i=i+1
done

Figure 17: do_sim.sh executes subsequent chunks of the production run. Please note that each
run is rather short here (2500 timesteps). Usually one would use a longer simulation if 0.5 − 1.0 ns
(250000-500000 timesteps).
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For the production run the Nosé-Hoover thermostat is used, since the VTREMD-algorithm
is basically derived assuming a canonical distribution. I would like to emphasize the use
of the center_gmx command here. It is used to translate the protein to the very center
of the simulation box (and of course all the solvent molecules are translated as well). Both
arguments specify the range of residues, which belong to the protein. Please note that this
might have to be changed when studying a different protein.

5.3 Some Analysis

5.3.1 PVT-Data

The shell-script do_pvt.sh , located in the RPMDRUN_DEMO/AK_DEMO/PVTsubdirec-
tory, calculates the average potential energy, temperature and pressures, as well as
the second moment of their distribution functions. This is basically done by the
scanavdata_gmx -program, which comes with the REPLICA-package. scanavdata_gmx
needs a replica.gmx -file in order to know about all V, T -states. I prefer to create it di-
rectly from REPLICA.def here, since this ensures that all states will be nicely ordered.
scanavdata_gmx generally expects a data-stream coming in the PTE-format and extracts
and accumulates the data, corresponding to each of the states. Please note that by selecting
only particular PTE-files, one might restrict the averaging to certain parts of the total simula-
tion run (e.g. the second half,. . . etc.).

#!/bin/sh

r_mkgmx.pl < ../run/REPLICA.def > replica.gmx

ptefiles=‘ls -t ../run/R*sim*.edr_pte‘
#ptefiles=‘ls -t ../run/R*sim[5-8].edr_pte‘

cat $ptefiles | scanavdata_gmx > PVT.dat

Figure 18: do_pvt.sh calculates the average temperature, potential energy, and pressure, as well
as the second moment of their distribution functions for each state of the extended ensemble. The
ouy-commented line illustrates how to restrict the averaging only to a certain part of simulation run.

5.3.2 Extracting Protein-Coordinates

Figure 19 contains the shell-script extract.sh , located in the
RPMDRUN_DEMO/AK_DEMO/extract subdirectory. It extracts only the protein coordi-
nates for each replica, which are usually distributed over a number of .xtc -files (that
contain, in addition, also the solvent molecules), while creating one new .xtc -file for
each replica, which is finally holding the complete entire trajectory of just the protein. The
program protextrx is basically doing the job by cutting out a range of atoms of the original
.xtc -files (Here: starting from atom 1 to atom 259). Please note that only every n’th configu-
ration is written to the new file, which can be specified at the -gap -option. For completeness,
also a corresponding PTE-file is created. Here. the Perl-script ./select_nth_time.pl just
passes through every n’th line of the incoming data-stream. In combination with pdb-file for
the peptide without solvent, akp.pdb , contained in RPMDRUN_DEMO/AK_DEMO/build, the
new .xtc -files are ready to be viewed with VMD. The Option -ignore_step0 is provides
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#!/bin/sh

nodes=‘cat ../run/replica.gmx | head -3 | tail -1‘

let nstop=$nodes
let nstop=nstop-1

GAP=10

let j=0

while [ $j -le $nstop ]
do

label=‘echo $j | awk ’{printf "R%00004d", $1}’‘

xtcfiles=‘ls -t ../run/${label}_sim*.xtc‘
ptefiles=‘ls -t ../run/${label}_sim*.xtc_pte‘
xtcoutfile="${label}_prot.xtc"
pteoutfile="${label}_prot.xtc_pte"

echo $label

protextrx -ignore_step0 -gap $GAP -xtc $xtcfiles -cnull 0 -ncsites 259 -xtcout $xtcoutfile
cat $ptefiles | ./select_nth_time.pl -n $GAP > $pteoutfile

let j=j+1
done

Figure 19: extract.sh Extracts just the protein coordinates contained in all .xtc -files belinging
to one particular replica and writes them to a new .xtc -file. This might be used to watch the fold-
ing/unfolding of the individual replicas. Here just every 10’th configuration is extracted.

an (unfortunately) necessary workaround, since the initial configuration (configuration ’0’,
if you like) is written to the .xtc -files, but not to the PTE-files. Using -ignore_step0 ,
protextrx actually will ignore this initial configuration.

5.3.3 Learning More About the Peptide-Configuration: The Radius of Gyration

In the RPMDRUN_DEMO/AK_DEMO/gyrdirectory it is actually demonstrated, how to extract
a particular structural (or any other) information about the peptide as a function of the con-
sidered states of an entire extended ensemble. Here we discuss only properties that can be
extracted by using one of the (standard) programs that come with the GROMACS distribu-
tion. In particular, only one application is discussed here: The calculation of the radius of
gyration, as obtained by calling the g_gyrate -program [2]. However, any other property
might be obtained in a straightforward fashion by calling other programs. sThe calculation
is done in three stages: First, the radius of gyration is calculated for each replica as a func-
tion of simulation time. This is achieved by the shell-script get_simx.sh , shown in Figure
20. Please note, that the range of considered parts of simulation runs has to be specified in
the script by assigning values to the variable $min and $max. The calculated property can
thus be restricted to certain parts of the total simulation run. Now, for each available protein-
configuration the radius of gyration will be calculated and the g_gyrate -output is written
to gyrate.xvg . After removing some irrelevant information, the content is added to a file
R####_gyr.dat , which finally contains the radius of gyration for each of the replicas over
the entire discussed part of the simulation. Please note that g_gyrate is called with the ’-b
1.0 ’-option. The intention is basically, that the first configuration in each of the .xtc -files
is skipped, as it has been discussed (more in detail) in the previous section. To calculate the
average radius of gyration as a function of the states, the scanavdata_gmx -program is used
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#!/bin/sh

nodes=‘cat ../run/replica.gmx | head -3 | tail -1‘

let nstop=$nodes
let nstop=nstop-1

let min=1
let max=2

let j=0

while [ $j -le $nstop ]
do

let i=$min

label=‘echo $j | awk ’{printf "R%00004d", $1}’‘
outfile=${label}_gyr.dat

/bin/rm -f $outfile

while [ $i -le $max ]
do

xtcfile=‘ls ../run/${label}_sim${i}.xtc‘

echo 4 | g_gyrate -b 1.0 -s ../run/R0000_MIN.gro -f $xtcfile
echo $label

cat gyrate.xvg | grep -v ’#’ | grep -v ’@’ | awk ’{print $2}’ >> $outfile
/bin/rm -f gyrate.xvg

let i=i+1
done
let j=j+1

done

Figure 20: get_simx.sh calculates the radius of gyration for all replicas. For each replica a file
R####_gyr.dat is created which contains the radius of gyration for each of the available configura-
tions. For each configuration there will be a new line. The are written in plain ASCII format.

#!/bin/sh

nodes=‘cat ../run/replica.gmx | head -3 | tail -1‘
let nstop=$nodes
let nstop=nstop-1

let j=0
while [ $j -le $nstop ]

do

label=‘echo $j | awk ’{printf "R%00004d", $1}’‘

echo $label
ptefiles=‘ls ../run/${label}_sim[1-2].xtc_pte‘

cat $ptefiles | cut -c 1-9 > a.dat
cat $ptefiles | cut -c 22- > b.dat

paste a.dat ${label}_gyr.dat b.dat > ${label}_mix.dat

let j=j+1
done

Figure 21: do_mix.sh intermixes the R####_gyr.dat -files and the PTE-files in order to be able to
assign each obtained value to its corresponding state-point.

the same way, as it is shown done in section 5.3.1. Therefore the corresponding PTE-files and
R####_gyr.dat -files have to be mixed, which is done by do_mix.sh , as shown in Figure
21. Here, the PTE-files are basically splitted vertically and the second column of each PTE-
file is cut out. Finally, the two halfs of the PTE-file and the R####_gyr.dat -file are pasted
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#!/bin/sh

r_mkgmx.pl < REPLICA.def > replica.gmx

cat R*mix.dat | scanavdata_gmx > GYR.dat

Figure 22: do_average.sh calculates averages for each of the state-points of the entire extended en-
semble as it has been shown in section 5.3.1. However, instead of calculating the average temperature,
now the average radius of gyration is obtained.

together to form a new file, which has actually a PTE-format, but its second column contains
now the actual radius of gyration. do_average.sh passes the content of these files through
scanavdata_gmx , which comes finally up with the average radius of gyration as a function
of each of the considered state-points.

6 A (Preliminary) Concluding Remark

A lot of work has still to be done, basically I will try to add a section on the incorporation of
the AMBER-forcefield into GROMACS as soon as possible. However, in order to make the
GROMACS/AMBER-stuff convenient to work with, some additional programs still need to
be written. Basically, the data-extraction step has to be improved. Finally, I hope this little
HOWTO is not messed up too much and at least helpful in a sense.
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