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The kinetics of breaking and re-formation of hydrogen bonds (HBs) in liquid water is a prototype
of a reversible geminate recombination. HB population correlation functions (HBPCFs) are a means
to study HB kinetics. The long-time limiting behaviour of HBPCFs is controlled by translatoric dif-
fusion and shows a t−3/2 time-dependence, which can be described by analytical expressions based on
the HB acceptor density and the donor-acceptor inter-diffusion coefficient. If the trajectories are not
properly “unwrapped”, the presence of periodic boundary conditions (PBCs) can perturb this long-
time limiting behaviour. Keeping the trajectories “wrapped”, however, allows for a more efficient
calculation of the HBPCFs. We discuss the consequences of PBCs in combination with “wrapped”
trajectories following from the approximations according to Luzar-Chandler and according to Starr,
each deviating in a different fashion from the true long-time limiting behaviour, but enveloping the
unperturbed function. A simple expression is given for estimating the maximum time up to which
the computed HBPCFs reliably describe the long-time limiting behaviour. In addition, an exact
a posteriori correction for systems with periodic boundary conditions for “wrapped trajectories” is
derived, which can be easily computed and which is able to fully recover the true t−3/2 long-time
behaviour. For comparison, HBPCFs are computed from MD simulations of TIP4P/2005 model
water for varying system sizes and temperatures of 273 K and 298 K using this newly introduced
correction. Implications for the computations of HB lifetimes and the effect of the system-size are
discussed.

I. INTRODUCTION

The prototypical hydrogen-bonded liquid is, of course,
water.[1] According to Frank Stillinger, the key to under-
standing liquid water and its solutions lies in the concept
of the “hydrogen bond”.[2] As a consequence, the under-
standing of the hydrogen bond (HB) formation processes
provides critical insight into the dynamical properties of
the liquid. Hydrogen bonds, however, have been shown
to be crucial for the behaviour of many other molecular
and ionic liquids [3, 4], and are essential for protein sta-
bility and many biophysical processes.[5] The code for life
itself is written and copied based on matching hydrogen
bonding patterns.[6]

Regarding HB dynamics in water, Luzar and Chandler
[7] have argued that the HB dynamics are characterised
by local relaxation processes, which are mostly uncorre-
lated with respect to the specific bonding patterns near
a certain hydrogen bond.[8, 9] They could show that dif-
fusion processes govern whether one particular pair of
water molecules are close neighbours, and HBs between
such pairs form and persist randomly with mean life-
times determined by rate constants for bond making and
breaking.

A particularly popular way to study HB dynamics is
the concept of “intermittent” HB lifetimes, determined
via integrals over hydrogen bond population correlation
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functions (HBPCFs) as introduced by Stillinger, Rapa-
port and others.[10–17] From the point of view of chem-
ical kinetics, the breaking and re-formation of a HB
can be understood as a reversible diffusion-influenced
geminate recombination.[18] The long-time limiting be-
haviour of HBPCFs, which is well extending into the
nanosecond regime for water between 273 K and 298 K,
is entirely controlled by translatoric diffusion of the
water molecules. For sufficiently long times HBPCFs
are approaching the theoretically predicted t−3/2 scaling
law.[19] This behaviour can be quantitatively described
by analytical expressions based on the HB acceptor den-
sity and the donor-acceptor inter-diffusion coefficients.
The short-time decay, on the other hand, is related to
kinetics of HB breaking [8] and the local dynamics of
the OH bond-vector, including librations and reorienta-
tional motions.[20, 21] The presence of periodic bound-
ary conditions, however, perturbs the long-time limiting
behaviour, leading to a systematic under- or overesti-
mation, depending on which particular long-time treat-
ment/approximation for the HBPCFs is used. According
to Markovitch and Agmon the occurrence of this pertur-
bation can be avoided, if HB bonded partners are treated
as individuals, distinct from their periodic images.[18, 22]
These effects are, however, often neglected, with the hope
that recombination events with periodic images occur
sufficiently rarely.[23, 24] In this communication, we an-
alyze the effect of PBCs on such “wrapped” trajectories
by employing random walkers. Here the term “wrapped”
trajectories refers to the time evolution of molecule po-
sitions always “wrapped” into the central box, which is
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often the default mode of how trajectory data are stored.
We systematically vary the box-size of a periodic unit-
cell to determine the time interval up to which a reliable
long-time limiting behaviour can be obtained. The rele-
vant parameters controlling this time interval are identi-
fied as the box volume and the translatoric inter-diffusion
coefficient of hydrogen bond donors and acceptors. Fi-
nally, an exact time-dependent a posteriori correction for
systems with periodic boundary conditions is derived.
This term is able to fully restore the true t−3/2 long-
time limiting behaviour for C(t) obtained from untreated
“wrapped” trajectories, and is just based on the knowl-
edge of the donor-acceptor inter-diffusion coefficient and
the box-dimensions. These relations and corrections are
tested against MD simulations of liquid TIP4P/2005 wa-
ter for varying system sizes and temperatures.

II. METHODS

A. MD Simulations

We have performed MD simulations of liquid water us-
ing the TIP4P/2005 model [25], which has been demon-
strated to rather accurately describe the properties of wa-
ter compared to other simple rigid nonpolarizable water
models.[26] The simulations are carried out at 273 K and
298 K under NV T conditions using system-sizes of 128,
256, and 1024 molecules. MD simulations of 10 ns length
each were performed using Gromacs 5.0.6.[27, 28] The
integration time step for all simulations was 2 fs. The
temperature of the simulated systems was controlled em-
ploying the Nosé-Hoover thermostat [29, 30] with a cou-
pling time τT = 1.0 ps. Both, the Lennard-Jones and
electrostatic interactions were treated by smooth parti-
cle mesh Ewald summation.[31–33] The Ewald conver-
gence parameter was set to a relative accuracy of the
Ewald sum of 10−5 for the Coulomb- and 10−3 for the
LJ-interaction. All bond lengths were kept fixed during
the simulation run and distance constraints were solved
by means of the SETTLE procedure.[34]

To determine hydrogen bond population correlation
functions, autocorrelation functions over relatively large
time sets have to be computed. To evaluate time correla-
tion functions for large time sets with up to 5×104 entries
efficiently, we applied the convolution theorem using fast
Fourier transformations (FFT).[35, 36] The computation
of the properties from MD simulations were done using
home-built software based on the MDAnalysis [37, 38],
NumPy [39], and SciPy [40] frameworks.

B. Random Walkers

Here we outline our use of a “generic” random walker,
exploring space with and without periodic boundary con-
ditions. As illustrated in Figure 1, a “hydrogen-bonded”
state is defined by the random walker being located

Rs=1

D’

b

h=1

h=0

Figure 1. Schematic representation of the “generic” random
walker travelling with a diffusion coefficient Djump = D′ with
and without (b → ∞) periodic boundary conditions. The
spherical volume with radius Rs = 1 located at the center of
the box defines the “hydrogen bonded” state.

within a spherical volume of radius Rs = 1 around the
center of a cubic box of varying size b with a minimum
box-length of b = 2Rs = 2. Each walker starts from the
origin at t = 0 in a hydrogen-bonded state (h(0) = 1).
New coordinates are computed for discrete time inter-

vals δt = 0.1 from ~r(t+ δt) = ~r(t) + ~d, where ~d is vector

with random orientation and |~d| = (6Djumpδt)
1/2. Peri-

odic boundary conditions are applied in the sense that
the diffusing particle, when leaving the box on one side,
will enter on the opposite side. This feature, however,
can also be turned off. The HBPCFs reported here are
computed by sampling over 107 trajectories.

C. “Intermittent” Hydrogen Bond Lifetimes and
Dynamics

A popular way to study HB dynamics is the concept
of “intermittent” HB lifetimes, introduced by Stillinger,
Rapaport and others.[10–17] Here, we adopted the pair-
wise donor-acceptor definition according to Luzar and
Chandler.[8] Therefore, we calculate intermolecular HB
population functions h(t) for all possible donor-acceptor
pairs in our system. A donor-acceptor pair consists of the
OH bond-vector of one water molecule and the oxygen
atom of another. A “flipping” of an existing HB, where
the former donor becomes the acceptor of a HB from the
former acceptor, is considered a different donor-acceptor
pair.

The fluctuations of the HB population are described
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by the HB population correlation function [9, 11]

C(t) =
〈h(0)h(t)〉 − 〈h〉2

〈h2〉 − 〈h〉2
(1)

with the HB population function

h(t) =

{
1, if HB exists

0, if no HB exists
, (2)

which is calculated for every donor-acceptor pair sepa-
rately. The brackets denote averaging over all donor-
acceptor pairs of a specific HB species and all times
t = 0. The “intermittent” correlation function C(t) de-
scribes the fraction of HBs still intact at time t, provided
it was intact at t0 = 0, without the need for it to be
intact over the whole time interval t − t0. Due to the
property of h(t) with h(t) = h2(t) and thus 〈h〉 =

〈
h2
〉
,

the denominator in Equation 1 can be expressed as
[
〈
h2
〉
− 〈h〉2] = 〈h〉 [1− 〈h〉] with 〈h〉 [1− 〈h〉] ≈ 〈h〉 for

〈h〉 � 1. According to Luzar and Chandler, assuming

〈h〉2 ≈ 0 is leading to:

C(t) ≈ 〈h(0)h(t)〉
〈h〉

. (3)

As pointed out by Starr et al.[16], the approximation

〈h〉2 ≈ 0 in the numerator of Equation 1 could lead to
a misrepresentation of C(t) at long time intervals t for
“wrapped trajectories” of finite systems with periodic
boundary conditions. In particular, C(t) according to
Equation 3 does not decay to zero, which poses a prob-
lem if you want to compute HB lifetimes by integrating
over C(t). Therefore, due to his defence of Equation 1,
we will refer to Equation 1 in the remainder of this pa-
per as the “Starr” approximation. Note that for 〈h〉 � 1,
which is typically well fulfilled for molecular simulations
of N>100, Equation 1 is “practically identical” with

C(t) ≈ 〈h(0)h(t)〉
〈h〉

− 〈h〉 . (4)

For macroscopic systems, of course, the contribution due
to “−〈h〉” will be vanishingly small. We will show, how-
ever, that for finite sizes and the presence of periodic
boundary conditions both, the “Luzar-Chandler”- and
“Starr”–approximations envelop the true (i.e. no PBCs)
long-time limiting behaviour of C(t). They can only be
trusted up to a certain time interval tmax and need to be
corrected in a more appropriate fashion.

III. RESULTS AND DISCUSSION

A. Behaviour of a “Generic” Random Walker with
Periodic Boundary Conditions

It has been demonstrated, that the long-time be-
haviour of the hydrogen bond population correlation
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Figure 2. Hydrogen bond population correlation functions
C(t) for the “generic” random walker model with Djump =
1/6. Solid black lines: HBPCFs for a random walker with pe-
riodic boundary conditions with cubic box-lengths b according
to Equation 3. Solid turqoise lines: HBPCFs for a random
walker with periodic boundary conditions with the cubic box-
lengths b according to Equation 1. In all cases b is given in
units of Rs. Solid orange line: Analytical representation for
Cno-pbc(t) according to Equation 6. Dashed red line: Ana-
lytical representation for limt→∞ C(t) according to Equation
5.

function in an unrestricted three dimensional environ-
ment exhibits a t−3/2 time-dependence [41–44], which
also follows directly from solving Fick’s equation for an
instantaneous point source assuming an isotropic and ho-
mogeneous diffusion coefficient [45]. For particles hop-
ping between discrete bonded states, the long-time be-
haviour can be quantitatively expressed by

lim
t→∞

C(t) =
1

s ρacc(4πD′ t)3/2
, (5)

where D′ is the inter-diffusion coefficient D′ =Ddonor +
Dacceptor of hydrogen bond donors and acceptors, ρacc is
the HB acceptor-site density, and s is a scaling parame-
ter, depending on the topology of the “network” of hy-
drogen bond accepting sites, formed by the HB switching
pathways interconnecting adjacent sites. For instance, a
random walker on a primitive cubic lattice with six next
neighbours is described by s=1/2 at even time-steps (see
section III B for further clarification). Note that the pa-
rameter (s ρacc)

−1 is essentially assigning a volume to the
initial hydrogen-bonded state h(0). To describe the long-
time behaviour of the “generic” random walker model, we
use here (s ρacc)

−1 = 4/3πR3
s and D′ = Djump.

A quantitative description of C(t) for the “generic”
walker model in absence of any periodic boundary con-
ditions follows from the spherical volume defining a
hydrogen-bonded state, characterised by a radius Rs.
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Figure 3. More hydrogen bond population correlation functions C(t) for the “generic” random walker model. Solid black
lines: HBPCFs for a random walker with periodic boundary conditions and a box-size b according to Equation 3. Solid turqoise
lines: HBPCFs for a random walker with periodic boundary conditions and a box-size b according to Equation 1. Solid orange
lines: Analytical representation for Cno-pbc(t) according to Equation 6. Dashed red lines: Analytical solution for limt→∞ C(t)
according to Equation 5. The open symbols indicate the time-limits tmax according to Equation 8 up to which the computed
HBPCFs reliably describe the long-time limiting behaviour for the “Luzar-Chandler” approximation with n=2 and the “Starr”
correction with n=20. a) Varying Diffusion coefficients with D′ = Djump = 1/6,1/15, and 1/36 for a box-size b = 6 b) Varying
box-sizes b for a diffusion coefficient D′ = Djump = 1/6. In all cases b is given in units of Rs.

By integrating the solution of the Fick equation for an
instantaneous point source [45] over a spherical volume
with radius Rs around the starting point at t = 0, the
following analytical expression is obtained:

Cno-pbc(t) = erf

[
Rs√
4D′t

]
− Rs√

πD′t
exp

[
− R2

s

4D′t

]
, (6)

here D′ = Ddonor + Dacceptor = Djump. For t → ∞,
Equation 6 approaches asymptotically Equation 5, finally
also exhibiting t−3/2 behaviour [42].

The presence of periodic boundary conditions (PBCs)
leads to the fact that the initially hydrogen-bonded part-
ners cannot fully escape from one another, since rein-
carnations in the form of periodic images will reconvene
repeatedly. This introduces a deviation for long times
t from the t−3/2 long-time limiting behaviour and the
emergence of a plateau. The plateau value C∞ is repre-
senting the portion of time the hydrogen-bonded partners
spend with each other in equilibrium. For the “generic”
walker this value corresponds exactly to the ratio of the
volume used for defining the HB state and the box vol-
ume

C∞ =
4

3
π
R3
s

〈V 〉
(7)

with 〈V 〉 = b3. This value also represents exactly the
fraction of hydrogen-bonded states 〈h〉 in equilibrium.
As is is shown in Figure 2, with increasing box-size the
transition to the plateau is shifting towards longer times.

However, the “Starr” correction according to Equation 1
accounts for the effect of periodic boundary conditions
such that the “Luzar Chandler” and “Starr” approxi-
mations both envelope the true long-time limiting be-
haviour expressed by Equations 6 and 5. From Figure
2 it is obvious that the “Starr” approximation is repre-
senting the true (i.e. without PBCs) C(t) worse than the
“Luzar Chandler” approximation, since it is introducing
a hardly qualifiable time-scaling behaviour for long times
t, whereas the transition to a plateau in the “Luzar Chan-
dler” approximation can be certainly better detected.
Moreover, before transitioning to a plateau value, the
“Luzar Chandler” approximation follows the true C(t)
more faithfully. To estimate the time-interval tmax up
to which the computed C(t) in presence of PBCs can be
trusted, we determine the intersection of the limt→∞ C(t)
according to Equation 5 and the plateau-value C∞ given
by Equation 7:

tmax =
〈V 〉2/3

4πD′ · n2/3
. (8)

Here the contributions from the volume defining the
hydrogen-bonded state cancel out each other, such that
the time-interval tmax solely depends on the volume of
the central box and the inter-diffusion coefficient of HB
donors and acceptors D′. The true intersection time tmax

is, of course, found for a value of n = 1 in Equation 8.
However, as it is demonstrated in Figure 3, the deviation
from the unperturbed HBPCF start to become signifi-
cant at an earlier time, which can be taken into account
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by a value of n≈2 for the “Luzar Chandler” approxima-
tion and about n≈20 for the “Starr” approximation. So,
tmax is the time, when the HBPCF passes a threshold-
value of n · C∞. The corresponding values for C(tmax)
are indicated in Figure 3a for varying diffusion coeffi-
cients D′ with a fixed box-size of b = 6, and in Figure
3b for box-sizes varying between b = 4 and b = 20 for a
fixed diffusion coefficient of D′ = 1/6.

B. A Correction-Term for Periodic Boundary
Conditions

Now that we have established the time range up to
which the computed HBPCFs can be trusted, we propose
an a posteriori treatment of the long-time behaviour, cor-
recting for the effect of periodic boundary conditions
using “wrapped” trajectories. Obviously, it would be
preferable, to have a correction-term, that provides the
true (i.e. no PBCs) HBPCF. Our solution is based on
the insight that such a correction needs to take into ac-
count the time structure of the correcting term. Here, we
propose to describe the time-dependence in the following
way:

C(t) =
〈h(0)h(t)〉
〈h〉

− 〈h〉 s(t) , (9)

where s(t) represents a “switching function”, appropri-
ately converting from the “Luzar-Chandler” approxima-
tion for short times limt→0 s(t) = 0 to the “Starr” cor-
rection at long times limt→∞ s(t) = 1 in such a way, that
the true t−3/2 long-time limiting behaviour is restored.
To determine this switching function, we have computed
s(t) based on the data shown in Figure 3 according to

s(t) = C−1∞

[
〈h(0)h(t)〉
〈h〉

− Cno-pbc(t)

]
. (10)

Here, the expressions for Cno-pbc(t) and C∞ are given by
Equations 6 and 7, respectively. The computed functions
s(t), of course, depend on the diffusion coefficients D′ and
the box-sizes b of the systems under consideration. For an
universal, system-size- and particle-mobility-independent
representation, we switch for s(t) to a diffusion- and
system-size-invariant time-scale. In Figure 4 the func-
tions s(t) for varying parameters D′ and b are plotted on
a reduced timescale u with u = D′t/b2. By doing so, all
the computed functions s(u) for different diffusion coef-
ficients D′ and box-sizes b fall on top of each other and
are represented by a single master curve.

For deriving an analytical expression for the universal
switching function s(u), we analyse the behaviour of a
hypothetical random walker on a periodic primitive cu-
bic lattice with lattice spacing d = (D′δt)1/2 for a given
fixed time-step δt. Here the box size of the periodic unit
cell is defined as k-times the lattice spacing b = k · d. A
peculiarity of a random walker on a lattice with a fixed
time-step is that it can return to its origin only at an
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even number of time-steps, such that the number of lat-
tice points that is accessible to the walker at either, even
or uneven time steps is exactly one half of the total num-
ber of lattice points. Hence, the long-time limit of the
corresponding HBPCF for a nonperiodic (k →∞) lattice
follows

C(t) ≈ 1

1/2 ρ (4πD′t)3/2
, (11)

where ρ = d−3 is the density of lattice points. Typi-
cally, on-lattice random walkers follow this approximate
behaviour already after a few time-steps. For the random
walker on a periodic lattice, the fraction of the time the
walker visits its starting point at t = 0, or its periodic
images is hence given as

〈h〉 = C∞ =
2d3

b3
=

2

k3
. (12)

Let us assume, the probability of finding a random walker
at a certain point p(~r, t) follows a Gaussian distribution

p(~r, t) = q(t)−1e−|~r|
2/(4D′t) (13)

with q(t) = (4πD′t)3/2. To compute the HBPCF within
the “Luzar-Chandler” approximation, we have to con-
sider contributions from all periodic images in addition
to the central box. Hence,

C(t) =
〈h(0)h(t)〉
〈h〉

=
2d3

q(t)
× (14)

∞∑
n=−∞

∞∑
m=−∞

∞∑
l=−∞

e−b
2(n2+m2+l2)/(4D′t) ,

where the vectors (n,m, l) point at all periodic images,
including the central unit cell located at (0,0,0). Follow-
ing the definition for s(t) from Equation 10, we have to
subtract the contribution from the term for (0, 0, 0) and
multiply by b3/(2d3), such that

s(t) =
b3

q(t)

{
1 + 2

∞∑
n=1

exp

[
− b

2n2

4D′t

]}3

− b3

q(t)
. (15)

By substituting u = D′t/b2, we obtain

s(u) =
1

q(u)

{
1 + 2

∞∑
n=1

exp

[
−n

2

4u

]}3

− 1

q(u)
(16)

with q(u) = (4πu)3/2. Here, Equation 16 shows a quali-
tatively correct limiting behaviour. For u→∞ the sum
can be approximated as an integral over u, which con-
verges to (πu)1/2, leading to limu→∞ s(u)=1. For u→ 0
the contribution from the individual exponentials are di-
minishing, such that limu→0 s(u)=0. Unfortunately, the
sum in Equation 16 has to be computed numerically.
However, for the relevant range of u used in molecular
simulations with u < 102, the sum converges quickly,

such that a nmax ≈ 100 is more than sufficient. For very
small systems (e.g. defined by a small value of k ≤ 4)
the Gaussian distribution used in Equation 13 should be
replaced by a multinomial distribution. For system sizes
of k ≥ 10, however, the results from Equation 13 and
lattice simulations are practically indistinguishable and
for 4 < k < 10 it serves as a very good approximation.
Therefore, as an application to molecular simulations, the
use of a Gaussian distribution is perfectly adequate.

We would like to point out that the application of
Equation 16 to non-cubic periodic boundary conditions
is straightforward: We just need to replace the cubed
sum in Equation 16 by a product of three sums, where
u is computed for each direction x, y, z separately using
uα = D′αt/b

2
α with α ∈ {x, y, z}. The normalization fac-

tor has to be adjusted accordingly with q(ux, uy, uz) =

8π3/2(uxuyuz)
1/2. This procedure, of course, also incor-

porates non-isotropic systems, where variations of the dif-
fusion coefficient in different directions are observed, for
example for a smectic phase of a liquid crystal, or for the
lateral diffusion within a membrane.

Finally, in Figure 4 we compare the prediction of s(u)
according to Equation 16 with the corresponding func-
tions derived from the random walker simulations. In
Figure 5, we apply the correction outlined in Equations
16, using the HBPCF-data from a random walker model
with b = 6 and varying diffusion coefficients D′ based
on the “Luzar-Chandler” approximation as input source.
As indicated by the solid green lines depicted in Figure 5,
the proposed time-dependent “BNP” (Busch, Neumann,
Paschek) correction is able to fully recover the correct
long-time limiting behaviour of the computed HBPCFs,
thus being superior to any of the other hitherto employed
treatments.

C. HBPCFs for Liquid Water as a Test Case

A rigorous definition of a hydrogen-bonded state would
need to involve electronic structure calculations [46–48].
Since quantum mechanical calculations are not yet fea-
sible at the required scale, the most rational approach
is to rely on energetical or geometrical criteria [16, 49].
Here, we follow the procedure of Kumar et al. [49] to
identify a hydrogen-bonded state as a basin on a “free
energy landscape” of suitable geometric parameters. As
criteria for a hydrogen bond in liquid TIP4P/2005 water
we use an intermolecular O· · ·H distance rOH ≤ 0.25 nm
and a cosine of the angle α between the intermolecular
O· · ·H vector and the intramolecular O–H bond-vector
donating the HB of cos(α) ≤ −0.6, both encompassing
the corresponding “free energy basin”. We would like
to emphasise that Kikutsuji et al. [50] have recently ex-
plored numerous different geometrical HB definitions for
TIP4P/2005 water based on Kumar’s suggestions, and
found that they were all leading to consistent results.

We have examined MD simulations of TIP4P/2005 wa-
ter at 273 K and 298 K of 10 ns length. Details of the
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Figure 6. Hydrogen bond population correlation functions for TIP4P/2005 water at 273 K and 298 K for system sizes with
N=128, N=256, and N=1024 water molecules: a) 128 water molecules at 298 K. b) 256 water molecules at 298 K. c) 1024 water
molecules at 273 K. d) 1024 water molecules at 298 K. Dashed red lines: analytical representation for limt→∞ C(t) according to
Equation 5 using the parameters given in Table ??. The open symbols indicate the times tmax according to Equation 8 for the
“Luzar-Chandler” approximation with n=2 and the “Starr” correction with n=20. Solid black lines: HBPCFs according to the
“Luzar-Chandler” approximation (Equation 3). Solid turqoise lines: HBPCFs according to the “Starr” correction (Equation
1). Solid green lines: HBPCFs according to the “BNP” correction (Equation 16) using the parameters given in Table ??. Note
that water serves as both, donor and acceptor, hence D′=2×Dself.

analysis of our MD simulations are summarised in Table
??. Note the system-size dependence of the self-diffusion
coefficient, as shown in Table ??. This system size de-
pendence behaves exactly like it has been reported ear-
lier from simulations of TIP3P water [51], and its ori-
gin has been linked to hydrodynamic self-interactions
[51, 52], and can be explained quantitatively. Based on
the above-defined HB criteria, Figure ?? shows the com-
puted hydrogen bond population correlation functions for
TIP4P/2005 water. The obtained plateau-values for the
“Luzar-Chandler” approximations are given also in Ta-
ble ??. The plateau values C∞ correspond roughly to
the inverse number of water molecules in the system, but

not quite exactly, since not all the water molecules are
engaged in a hydrogen bond all the time. Here, an in-
creasing fraction of broken HBs adds to the time-slice
hydrogen bonded partners cannot spend with each other,
and is therefore leading to a lower C∞. This way we can
explain the small but consistent temperature dependence
of C∞ observed in Table ??. Similar to the behaviour of
the “generic” random walker model, both the “Luzar-
Chandler” and “Starr” approximations are enveloping
the t−3/2 long-time limiting behavior indicated by red
dashed lines based on Equation 5 using the parameters
given in Table ??. By applying the “BNP” correction
to the “Luzar–Chandler” data using the box size-, self-
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Table I. Parameters describing the MD simulations performed under NVT conditions at the indicated densities ρ. b: MD unit
cell box-length. ρacc: hydrogen bond acceptor density. s: scaling parameter used in Equation 5. Dself: water self diffusion
coefficient, determined from the slope of the center-of-mass mean square displacement of the water molecules. C∞: averaged
plateau value of the HBPCFs obtained for the “Luzar-Chandler” approximation. τHB: HB lifetime obtained by numerically
integrating the respective HBPCFs. St: “Starr”. BNP: “BNP”.

N T/K ρ/g cm−3 b/nm ρacc/nm−3 s Dself/10−9 m2s−1 C∞ τHB,St/ps τHB,BNP/ps

128 273 0.9997 1.56462 33.42 1.00 0.92 7.6× 10−3 9.52 11.98
256 273 0.9997 1.97130 33.42 0.98 0.97 3.8× 10−3 10.01 11.88
1024 273 0.9997 3.12924 33.42 0.96 1.01 9.5× 10−4 11.00 12.01

128 298 0.9972 1.56597 33.33 1.00 1.85 7.5× 10−3 4.75 5.81
256 298 0.9972 1.97300 33.33 0.98 1.93 3.7× 10−3 4.82 5.78
1024 298 0.9972 3.13194 33.33 0.96 2.07 9.3× 10−4 5.30 5.76
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Figure 7. Hydrogen bond population correlation functions
for TIP4P/2005 water at 298 K for system sizes with N=128,
N = 256, and N = 1024 water molecules using the “BNP”
correction.

diffusion-, and C∞-data given in Table ??, we are able to
fully restore the long-time limiting behaviour in a correct
fashion, independently of the chosen temperature or sys-
tem size. Here, we are showing the computed HBPCFs
over the entire simulation time-range, reporting the value
of the C(t) function over five orders of magnitude. How-
ever, depending on the system size, the restored HBPCFs
are dominated by noise for times greater than about one
nanosecond. Here, the 1024-molecule systems exhibit vis-
ibly better statistics. For a better comparison, the com-
puted HBPCFs including the “BNP” correction for wa-
ter at 298 K and different system sizes are superimposed
in Figure 7. Note that all graphs are perfectly aligned
and lie on top of each other. The only noticeable dif-
ference is the decreasing noise at large t with increasing
system size. At this point we can only speculate that a
mechanism similar to the one that keeps the computed

shear viscosity from being system-size-dependent [51] is
at work here as well. Hydrogen bond lifetimes, computed
as integrals over HBPCFs represent a simple and popu-
lar means to quantify HB kinetics. To study the effect
of the “BNP” correction on the HB lifetimes, we have
used “brute-force” numerical integration of the unaltered
HBPCFs according to the Starr approximation over the
whole available time-interval. Since we know the long-
time limiting behavior of the HBPCFs according to the
“BNP” correction, we numerically integrate the HBPCS
up to a time t∗ = 200 ps and correct for the long-time
limit according to

τHB,BNP =

t∗∫
0

C(t) dt+
1

s ρacc4(πD′)3/2
√
t∗
. (17)

As shown in Table ??, the lifetimes according to the
“Starr” approximation show a clear system size depen-
dence. This behaviour can be well understood, since
with increasing system-size the deviation from the un-
perturbed behaviour is starting at a later time. The life-
times according to the “BNP” correction are consistent
and show no clear system-size dependence in accordance
with the observed system-size independence of the com-
puted HBPCFs shown in Figure 7. Their values obvi-
ously seem to represent the limiting values the “Starr”
approximation data aim towards for infinite system sizes.

IV. CONCLUSIONS

In this contribution we have analysed the effect of pe-
riodic boundary conditions (PBCs) on the long-time lim-
iting behaviour of hydrogen bond population correlation
functions (HBPCFs) obtained from untreated “wrapped”
trajectories. Here the breaking and re-formation of hy-
drogen bonds serves as a test case scenario for the more
general application of the reversible diffusion-influenced
geminate recombination, which could be applied in the
form of similar population correlation functions (PCFs)
to related problems such as diffusion controlled ion-pair
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re-formation [53]. In order to compare HPBCFs in pres-
ence of PBCs with the true unperturbed behaviour, we
employed a simple random walker model, allowing to eas-
ily vary the size of the periodic box and the diffusion co-
efficient. Here, the hydrogen bonded state is defined by
a sphere of a given radius around the starting point of
the walker at t = 0. The HBPCFs for the correspond-
ing random walker in absence of PBCs are given as a
simple analytical expression. For defining HBPFs, essen-
tially two different strategies have been used, either fol-
lowing Starr et al. [16] or Luzar and Chandler [8]. The
“Starr” approximation has the advantage of properly de-
caying to zero, whereas the “Luzar-Chandler” definition
follows more closely the behaviour in absence of PBCs,
but is finally transitioning to a plateau value. Here we
demonstrate that each method is deviating in a different
fashion from the true long-time limiting behaviour, but
enveloping the unperturbed function. By quantitatively
analysing the random walker trajectories, however, we
find that the “Luzar-Chandler”-approximation is follow-
ing the true (i.e. no PBCs) behaviour up to one order of
magnitude in time more faithfully. Based on an expres-
sion for the long-time limiting behaviour of the HBPCFs
following a t−3/2 time-dependence, a simple expression
is given for estimating the maximum time interval up to
which the computed HBPCFs for either of the two ap-
proximations are reliably describing the long-time limit-
ing behaviour and can therefore be trusted. An exact
a posteriori correction for systems with periodic bound-
ary conditions is derived, which can be easily computed
and which is able to fully recover the true t−3/2 long-
time behaviour for HBPCFs based on data computed us-
ing the “Luzar-Chandler”-approximation. The suggested
“BNP” correction just requires the knowledge of the HB
donor-acceptor inter-diffusion coefficient and the size of
the box-dimensions. For comparison, we have computed
HBPCFs for liquid water at 273 K and 298 K from MD
simulations of TIP4P/2005 model water for varying sys-
tem sizes and temperatures using this newly introduced
correction. Quite interestingly, the computed HBPCFs
do not show indications of a system-size dependence, de-
spite the fact that the self-diffusion coefficients is system-

size dependent.
Finally, although it is true that the same HBPCFs

could be computed using the trajectory “unwrapping”
procedure described by Markovitch and Agmon[18], we
believe that the BNP-approach is of value, since it just
requires a simple post-processing procedure which can be
realized in the form of a Perl-script with a few lines of
code. Even then the post-processing typically takes less
than a second for time correlation data sets with multi-
ple ten-thousand entries. Another argument that could
be made in favour of the BNP approach, we think, could
be numerical efficiency, since the maximum number of
correlation functions that need to be computed is lim-
ited by the combination of all possible donor-acceptor
pairs in the system. On the other hand with respect
to the “unwrapping” approach: for a truly periodic sys-
tem, the number of possible donor-acceptor combina-
tions is infinite. Even the number of combinations that
meet (i.e. form a HB) at least once is infinite. To
achieve the same statistical accuracy as the BNP ap-
proach, one would therefore have to identify all unique
(non-duplicate) donor-acceptor combinations of all peri-
odic images that meet at least once, which we suspect,
could be larger than the number of donor-acceptor pairs
in the system.
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