
Universität Dortmund
Physikalische Chemie IIa
Otto-Hahn Str. 6
D–44221 Dortmund, FRG

User’s Guide and Manual

MOSCITO 4

Performing Molecular Dynamics Simulations

Dietmar Paschek and Alfons Geiger

April 7, 2003

Contents

1 Introduction 1
1.1 Preliminaries . 1
1.2 Citation Form . 2
1.3 Obtaining MOSCITO 4 . 2
1.4 Disclaimer . 2
1.5 Acknowledgements . 2

2 Installation 4
2.1 Source distribution . 4

2.1.1 Fixed array dimensions . 6
2.1.2 Some Intel/AMD specific code . 6
2.1.3 Some notes concerning recent Red Hat and SuSE Linux distributions . . 6

2.2 Binary distribution . 6
2.3 Basic testing . 6

3 MD–Simulation: Basics 7
3.1 MD–Algorithm . 7
3.2 Constraint dynamics . 8
3.3 Periodic boundary conditions and minimum image convention 10
3.4 The MOSCITO 4 force field model . 11
3.5 Handling electrostatic interactions . 14

3.5.1 The concept of Ewald summation . 15
Real space sum . 16
Reciprocal lattice sum . 18
Corrections for self-interaction . 19
Total electrostatic energy . 20

3.5.2 Smooth particle mesh Ewald . 21
3.6 Temperature . 24
3.7 Pressure . 24
3.8 Berendsen–Ensemble . 25

4 Setting up a MD–Simulation 27
4.1 Simulation Control: PARAMETER–file . 27

4.1.1 Forcefield declaration . 27
4.1.2 Startup configuration . 28
4.1.3 Force calculation . 28
4.1.4 SHAKE setup . 30
4.1.5 Ewald summation setup . 30

i

4.1.6 MD run specifications . 32
4.1.7 Weak coupling control . 32
4.1.8 MD-Output control . 33

4.2 Forcefield Definition: SYSTEM–file . 34
4.2.1 Header–chapter . 34

The site–environment . 35
Defining Lennard-Jones interactions . 36

4.2.2 Molecule–chapter . 37
The label–command . 37
The freedom–command . 37
The configuration–environment . 37
Applying constraints: The constraints–environment 38
Switch off explicit interaction pairs: The exclude–environment 38
Defining virtual sites: The virtual–environment 39
Defining bonds: The bond–environment 40
Defining bond–bending interactions: The angle–environment 41
Defining dihedral–potentials: The dihedral–environment 42
Modified nonbonded intramolecular interactions:

The nonbonbonded–environment 43
Internal coordinates: The z-matrix–environment 44

4.2.3 Footer–chapter . 44
The build–environment . 44
Calculating electric field gradients: The efg–environment 45
Introducing harmonic intermolecular interactions: The umbrella envi-

ronment . 46
4.3 File–formats . 46

4.3.1 STRUCTURE–file . 46
4.3.2 LOG–file . 48
4.3.3 DATA–file . 48
4.3.4 CRD–file . 49
4.3.5 XTC–file . 49
4.3.6 VEL–file . 49

5 MOSCITO Command Reference 50
5.1 Running a MD Simulation . 50

5.1.1 moscito . 50
5.1.2 moscito-net . 51
5.1.3 mosdrop . 51

5.2 Basic STRUCTURE-file manipulation . 52
5.2.1 center . 52
5.2.2 changedens . 52
5.2.3 delete . 52
5.2.4 duplicate . 52
5.2.5 infostr . 52
5.2.6 mirror . 53
5.2.7 molmove . 53
5.2.8 rotate . 53

ii

5.2.9 scalevel . 53
5.2.10 sortstr . 54
5.2.11 struccombine . 54
5.2.12 suggestk . 54
5.2.13 sysbuild . 54
5.2.14 sysrandomize . 55

5.3 Advanced STRUCTURE-file manipulation . 55
5.3.1 align_inert . 55
5.3.2 rm_moment . 55
5.3.3 mom_invert . 56

5.4 Properties of a system defined in a STRUCTURE-file 56
5.4.1 energy . 56

5.5 Converting STRUCTURE-files into different formats 56
5.5.1 struc2dlp . 56
5.5.2 struc2mmf . 57
5.5.3 struc2pdb . 57
5.5.4 struc2pov . 57
5.5.5 struc2xyz . 57
5.5.6 struc2gro . 58

5.6 Calculation of simple thermodynamic properties from simulation runs 58
5.6.1 average . 58
5.6.2 avdata . 58
5.6.3 calc_err . 58
5.6.4 density_err . 59

5.7 Structure of liquids — calculation of pair distribution functions 59
5.7.1 gofr, gofr_large . 59
5.7.2 gofrcms . 61
5.7.3 sofq . 61

5.8 Single particle (molecule) dynamics in liquids 62
5.8.1 msdmol . 62
5.8.2 dipolcor . 63
5.8.3 vectorcor . 63
5.8.4 nvectorcor . 64

5.9 Geometry Optimization of individual molecules 65
5.9.1 zminit . 65
5.9.2 addzmat.pl . 66

5.10 Creating an aqueous solution . 66
5.10.1 solve . 66
5.10.2 addspce.pl . 67
5.10.3 addspc.pl . 67
5.10.4 addtip3p.pl . 68
5.10.5 addtip4p.pl . 69
5.10.6 addtip5p.pl . 69

5.11 Building mixtures . 69
5.11.1 mergestr . 69
5.11.2 mixsys.pl . 70

5.12 Adding hydrogens to united atom carbons . 70

iii

5.12.1 addh2str . 70
5.12.2 addh2crd . 72

5.13 Miscellaneous . 72
5.13.1 config_mos . 72
5.13.2 b2l . 72
5.13.3 crd2xtc . 73
5.13.4 addsection.pl . 73

Bibliography 74

iv

1 Introduction

1.1 Preliminaries

We hope that we don’t have to convince you that molecular dynamics simulation is a power-
ful technique and that you are quite familiar with its foundations and limitations and willing
to run a simulation. The books by Allen and Tildesley [1] and Frenkel and Smit [2] are rec-
ommended as comprehensive introductionary texts1. An extensive overview over the field of
molecular modelling is given by Leach [4].

The MOSCITO 4 simulation program is designed to perform molecular dynamics simu-
lations of rigid and/or flexible molecules using classical molecular mechanics force–fields.
MOSCITO 4 could perhaps stand for ’MOlecular Simulation of Charged InteracTing Objects’
(If you have a better idea aboout the MOSCITO 4 akronym, please send us a note). This shall
emphasise in some way that the long ranged Coulomb interactions are treated in a rather
sophisticated way, which is rigorously correct for periodic systems. An important feature of
MOSCITO 4 is the employed flexible force field approach (in a subsequent chapter the defini-
tion will be given in detail), which allows the treatment of a wide variety of different problems
in the field of molecular physics.

MOSCITO 4 runs efficiently on rather small computers like stand-alone PC’s (The authors
favour strongly the use of the Linux operating system) as well as on large “Supercomputers”
like the IBM SP2. So, the provided methods allow an efficient treatment of a wide spectrum
of MD–simulation tasks.

To achieve maximum flexibility, the aspect of force–field parameterisation has been sepa-
rated completely from the simulation kernel. This concept was favoured, since the interaction
potential is the most crucial and important input to a simulation. Its quality depends strongly
on the care which has been spent on its development. Some serious thoughts about the poten-
tial parameterisation should thus be in front of any simulation. There are certainly good and
highly reliable general purpose force-fields available, such as AMBER, OPLS, CHARMM and
GROMOS, but one should be able to check easily whether they give an appropriate descrip-
tion of your system or not. Additionally one should be able to fine–tune Potential–parameters
by systematically improving specific interactions, such as torsional potentials etc. MOSCITO
4 gives you the opportunity to do so. Moreover, the current version of MOSCITO 4 provides
programs, which allow one to perform molecule parameterisations based on the freely avail-
able Cornell et al. forcefield [5], which is part of the AMBER package.

This manual comprises the documentation for the MOSCITO 4 software. It is meant to in-
troduce the user to algorithms, provide references for the computational methods. An exten-
sive part of this manual will deal with “example applications”, where the use of the provided
software will be demonstrated in detail.

1A German textbook on molecular dynamics simulation by Haberlandt et al. [3] deals particularly with applica-
tions in physical chemistry.

1

1.2 Citation Form

The MOSCITO 4 simulation package should be cited as follows:

MOSCITO 4, D. Paschek and A. Geiger, Department of Physical Chemistry,
University of Dortmund, (2002).

1.3 Obtaining MOSCITO 4

The newest version of the MOSCITO 4 molecular dynamics simulation package is always
available through the Internet from the MOSCITO 4 home page at:

http://ganter.chemie.uni-dortmund.de/MOSCITO

The MOSCITO 4 package can be directly downloaded using a browser like netscape and
saved as a source–file. If you have hints, suggestions and/or comments you can send us
an e–mail:

Dietmar Paschek
Physikalische Chemie II a
Universität Dortmund
D-44221 Dortmund
paschek@pc2a.chemie.uni-dortmund.de

Alfons Geiger
Physikalische Chemie II a
Universität Dortmund
D-44221 Dortmund
geiger@pc2a.chemie.uni-dortmund.de

we are also interested in suggestions for improving this manual.

1.4 Disclaimer

MOSCITO 4 is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License (GPL) as published
by the Free Software Foundation (See file ./COPYING for details). This
program and manual are distributed in the hope that they will be useful,
but

WITHOUT ANY WARRANTY!

1.5 Acknowledgements

We would like to thank the following people who have contributed to MOSCITO 4 in
any possible way: Andreas Appelhagen, Ralf Baumert, Oliver Biermann, Robert Bieshaar,

2

Frank Eikelschulte, Amelie Rehtanz, Ingo Köper, Sascha Nonn, Frank Schmauder and Ralf
Schmelter. Ralf Schmelter has to be thanked extensively for contributing the Intel Assembler
coding of “force_ew_fast ” and some tuning of PME– and neighborlist routines. Sascha
Nonn has contributed his X11-based crd-file trajectory viewer.

3

2 Installation

2.1 Source distribution

To install MOSCITO 4 you have to create a directory somewhere in your directory tree (e.g.
/home/myself/MOSCITO) and to unpack the moscito_source.tgz archive file (which
is gnuzipped) there:

gzcat moscito_source.tgz | tar -xvf -
or alternatively tar -xvzf moscito_source.tgz

You will obtain the complete MOSCITO 4 sub–directory tree which is organized as follows:

./Machines System dependent Makefile headers.

./MosView-0.84b X11-based crd-file trajectory viewer
contributed by Sascha Nonn.

./bin All executables.

./doc The documentation.

./examples Examples for reference and testing.

./forcefield Several programs and forcefield-libraries to
conveniently create and handle moscito system-files.

./include The header files.

./mostools The MOSCITO 4 utility program sources.

./parallel The parallel MOSCITO 4 MD program sources.

./potential Some programs to determine point charge models and
torsion potentials from ab initio calculations.

./src_drop Sources for a MD code without periodic boundary conditions.

./src_fft The netlib fast Fourier transform routines.

./src_mos The MOSCITO 4 MD program sources.

./src_pme The particle mesh Ewald sum routines.

./src_xrd The XRD libraries for compact coordinate files.

If you would like to use all the features the MOSCITO 4 system provides, you should defi-
nitely compile all the utility programs in the ./mostools and ./forcefield directories
(they are discussed in detail in subsequent chapters) as well. All the mentioned programs are
compiled automatically when using make in the MOSCITO 4 main directory (see Makefile
therein for details). However, before invoking the make-command, the appropriate configu-
ration has to be selected in the Makefile by activating one of the given switches (shown in
Figure 2.1). One of the corresponding Makefile-headers (which reside in ./Machines) will
then by copied to the main dir as Makefile.system and will then be included by any other
Makefile. All system dependent compiler options are defined here.

4

###
#
#Switches for the MOSCITO progs:
#
#GENERIC=TRUE
#SUNSPARC=TRUE
#ALPHA_AXP=TRUE
#RS6000=TRUE
#RS6000_PWR2=TRUE
#RS6000_PPC604_fftw=TRUE
#Linux=TRUE
#Linux_i486=TRUE
#Linux_i686=TRUE
#Linux_i686_fftw=TRUE
Linux_i686_dfftw=TRUE
#SuSE_8.1=TRUE
#RedHat=TRUE
#
#Switches for the MOSVIEW code:
#
MOSVIEW=TRUE
#
###

Figure 2.1: Head section of the Makefile in the MOSCITO 4 main directory.

If your System has a modern Intel/AMD hardware running Linux with a GNU (gcc/g77)
(e.g. gcc-2.95.3) compiler you should be able to compile the whole system straight out
of the box. We recommend using the FFTW library for fast Fourier transformation writ-
ten by Frigo and Johnson [6] and published under the GPL. The libs can be obtained
from http://www.fftw.org and are available for several platforms. The routines have
turned out to perform quite effectively on Intel/AMD architectures. Moreover, FFTW is al-
ready part of several common Linux distributions like e.g. SuSE 7.2. For such a case the
“Linux_i686_fftw=TRUE ” option will do well right from the start.

In case FFTW is not available and you cannot install it for some reason you can alterna-
tively use the netlib FFT routines which reside in the ./src_fft subdir. To choose them one
would use the “Linux_i686=TRUE ” option.

If your architecture is not present Fig 2.1, try the “GENERIC=TRUE”-option using the
./Machines/Makefile.system_GENERIC –file and see what will happen. If this doesn’t
work you have to find out the necessary compiler commands/directives on your own and
do the compilation by hand. Please note that due to dependencies it is important to do com-
pilation in the correct order: First, compile the FFT and PME–routines, then the MOSCITO
4 simulation program and finally the utility programs.

To allow access to the set of MOSCITO 4 programs from any point of your directory-tree
you should add "/home/myself/MOSCITO/bin " to your $PATH–variable. Now you should
be able to run MOSCITO 4 from anywhere in your system you like. Finally, a make clean
can be used to tidy up the directory tree (Note that the binaries will be discarded as well!).

5

2.1.1 Fixed array dimensions

As most of the MOSCITO 4 code is written in FORTRAN77, the array sizes are hardcoded
statically. In order to do this the most consistent way, the size-limits are defined in one single
file ./include/mos_const.h which is included by all of the programs (see file for a more
detailed description of the constants). If you have a system which exceeds the default limits
you have perhaps to increase some of the values. Typically, moscito stops with a message
indicating which limit has been exceeded.

2.1.2 Some Intel/AMD specific code

The real space force evaluation has been directly coded in Intel Assembler
(.src_mos/force_ew_fast_i386.S) yielding some significant performace gain. In
section 4.1.5 the keywords are explained which enable using this subroutine.

2.1.3 Some notes concerning recent Red Hat and SuSE Linux distributions

If you use a Red Hat (7.x) or SuSE (8.x) Linux distribution you have to apply some minor
modifications. Since the employed gcc3.x cpp behaves differently you have to replace

CPPOPT = -P

by

CPPOPT = -P -traditional -undef

in your ./Machines/Makefile.system_Linux . . . to ensure that the Fortran source code
is processed correctly or simply activate the SuSE_8.1=TRUE or RedHat=TRUE-switch.

2.2 Binary distribution

For Linux systems running on an Intel/AMD hardware we provide a binary distribution of
the MOSCITO 4 package (moscito_binaries.tgz) on our WWW-site.

2.3 Basic testing

Go to the ./example subdir and start the RUN.examples shell script. This will invoke five
subsequent MD simulation runs of several molecular systems with different sizes. A detailed
description of the systems under consideration will be written to 〈STDOUT〉. Moreover, the
produced averages for pressure, energies etc. are compared with reference data from our lab.
The differences of the printed data should be in any case zero. Otherwise, the build has been
errornous or your system has some severe problems with numerical accuracy. In addition,
detailed program-timings are indicated. Please don’t hesitate to send us the results together
with some information on the system that you use (processor-type, clock-rate, OS, compiler,
etc.) so that we can add it to our MOSCITO 4 -benchmark list available at:

http://ganter.chemie.uni-dortmund.de/MOSCITO/moscito_bench.shtml

6

3 MD–Simulation: Basics

Molecular Dynamics simulation in the presented sense is a method to compute static and dy-
namical equilibrium properties of classical many–body systems. As the name indicates, the
constituent “bodies” are molecules forming a certain ensemble, governed by the laws of clas-
sical statistical mechanics. This classical approach works rather well in the high temperature
limit hν ≤ kBT , where quantum effects play a minor role. This chapter will focus on the
molecular dynamics techniques which are implemented in MOSCITO 4 .

3.1 MD–Algorithm

The concept of classical molecular dynamics in general is based on the idea of solving New-
ton’s classical equations of motion for an interacting N–body system:

d2ri(t)

dt2
= m−1

i fi

fi = −
∂V(r1....rN)

∂ri
.

fi is the force acting on particle i and V is the total interaction potential. Facing the fact that
an analytical treatment fails if more than two particles are involved, this procedure has to be
done numerically using finite differences.

A number of different integration schemes to solve this set of differential equations have
been proposed. Luckily, one of the most simple ones is perhaps the most robust and usually
the best: The Verlet algorithm. In MOSCITO 4 it is implemented in its so called leapfrog form,
where velocities vi are calculated at half integer time-steps:

vi(tn + ∆t/2) = vi(tn − ∆t/2) + ∆t m−1
i fi(r1...rN, tn) +O(∆t3)

ri(tn + ∆t) = ri(tn) + vi(tn + ∆t/2)∆t+O(∆t3).

This gives rise to a slight disadvantage of the leapfrog algorithm. It is not possible to calculate
the total energy rigorously, because kinetic and potential energy are calculated at two different
times. However, it shows consistently small errors of O(∆t3) for velocities and positions.
As shown by a number of authors, the presented scheme is perfectly adequate for the MD
problem. The achieved accuracy is maybe not impressive, but a better, more exact algorithm
wouldn’t do much better due to the chaotic nature of the problem. However, the algorithm’s
properties of good short-time and long-time energy conservation and time reversibility make
it superior to other schemes, especially at large time-steps.

7

3.2 Constraint dynamics

The time-step∆t and consequently the efficiency of a MD–simulation is limited by the highest
possible frequencies νmax occurring in the system

∆t� ν−1
max.

If the system contains degrees of freedom corresponding to high frequency modes with small
amplitude and little or no correlation to all other degrees of freedom, it is found to be a good
approximation to separate these particular degrees of freedom and to freeze them using con-
strained dynamics. This approach has been proven to work well for bond lengths and to a
lesser extent for bond bending interactions.

Several methods have been proposed to calculate the constraints. In MOSCITO 4 the
SHAKE–scheme for distance constraints according to Ryckaert et al.[7] has been imple-
mented. A distance constraint between two particles at a time-step t is defined by

σk = (ri − rj)
2 − d2ij = 0.

Thus, the equations of motions for the particles change in the following way introducing
constraint–forces gi on particle i

mi
d2ri

dt2
= fi + gi = −

∂V(r1....rN)

∂ri
−
∑
k

λk
∂σk

∂ri
. (3.3)

The Lagrange multipliers λk have to be determined, so that all constraints are fulfilled. The
SHAKE procedure solves the problem by correcting the positions obtained from a constraint–
free dynamics r ′i using

ri = r ′i + δri.

The correction is performed along the distance constraint vector rij = ri − rj at the initial
time-step twhich leads to

δri(t+ ∆t) = −
∆t2

mi

∑
k

λk

(
∂σk

∂ri

)
t

= −
2∆t2

mi

∑
k

λkrij(t). (3.5)

The problem is to determine the multipliers λk that enable all the constraints to be satisfied
simultaneously. This can be done algebraically only in simple cases. Suppose, we wish to fix
the bond–length in a diatomic molecule. There is just one constraint in this case, so we can
write:

r1(t+ ∆t) = r ′1(t+ ∆t) +
2∆t2

m1
λr12(t) (3.6)

r2(t+ ∆t) = r ′2(t+ ∆t) −
2∆t2

m2
λr12(t) (3.7)

A third equation is derived from the requirement that the bond length is kept fixed

|r1(t+ ∆t) − r2(t+ ∆t)|2 = |r1(t) − r2(t)|
2 = d212. (3.8)

8

Figure 3.1: Example application of the SHAKE procedure to a diatomic molecule.

We now have three equations and three unknowns. Subtracting gives:

r12(t+ ∆t) = r ′12(t+ ∆t) + 2λ∆t2
(
1

m1
+

1

m2

)
r12(t) (3.9)

Squaring both sides and imposing the constraint gives:

r ′12(t+ ∆t)2 + 4λ∆t2
(
1

m1
+

1

m2

)
r12(t)

+ 2λ2∆t4
(
1

m1
+

1

m2

)2
r12(t)

2 = d212 (3.10)

Solving this quadratic equation for λ enables the new positions r1(t + ∆t) and r2(t + ∆t) to
be determined. However, in the general case with more than two atoms and more than one
constraint per atom, the algebraic approach becomes rather complicated. The SHAKE proce-
dure simplifies the problem by ignoring the terms which are quadratic in λ and solving it in
an iterative manner. This is necessary, since satisfying one constraint may cause another one
to be violated. Usually only a few iteration cycles are necessary to satisfy the constraints in
an acceptable tolerance. This depends, of course, on the length of the time-step used in simu-
lation. The tolerance should be tight enough to ensure that the fluctuations in the simulation
are small compared to fluctuations due to other sources, such as cutoffs. Angle constraints
can be easily accommodated in the SHAKE scheme by recognising that an angle constraint
simply corresponds to an additional distance constraint. A systematic problem with SHAKE
arises when planar structures of more than three atoms shall be constrained. This is due to the
fact that out–of–plane distortions converge very poorly, since there are no directions available
along which these displacements could be shifted back efficiently.

Normally SHAKE will be terminated if the constraints are satisfied within a given tol-
erance. The procedure will fail and the program stops, if one of the following two things
happens:

1. An excessive number (100) of iterations is required due to badly defined constraints.
MOSCITO 4 will stop with the following error–message occurring:

9

SHAKE: molecule no. 4
number of iteration has exceeded maximum
(100) -- simulation has been stopped !

2. The positional shift is so large in the unconstrained step that no correction along r12(t)
can be found that will produce a distance d12 between the corrected positions of atom 1
and 2. This may happen in an artificial starting configuration where strong forces occur
due to an overlapping of particles. The corresponding message is:

SHAKE: molecule no. 4
deviation too large.
simulation has been stopped !

3.3 Periodic boundary conditions and minimum image
convention

Simulations of condensed phases are only possible in so called periodic boundary conditions1.
Otherwise, the always present surface effects would affect the system properties in a non–
predictable manner. The periodic boundary conditions are achieved by replicating the central
simulation cell infinitely in space. Thus, as a molecule leaves the central box, one of its images
enters through the opposite face. The central box has no walls at its boundaries; therefore the
system has no surface. The only requirement for the shape of the central cell is a space-filling
geometry. In MOSCITO 4 , actually, only rectangular systems can be considered.

Along with the periodic boundary conditions comes the definition of the minimum image
convention (MIC). This means, considering a particle i, that all other particle positions are
projected to a cell, where i is placed in its center. In rectangular systems the distance between
two particles according to the minimum image convention is usually calculated by the “nint–
trick”

∆xij = xj − xi − Lx anint
(xj − xi) /Lx

 ,
where Lx is the length of the box in the x–direction. Of course, the same procedure has to be
applied also to the y– and z–directions. The procedure allows the calculation of the minimum
distance between two image particles. The minimum image convention is just one technique
among others to handle intermolecular distances in periodic systems. Different schemes have
been proposed and were implemented (eg. in the MOLDY simulation program by K. Refson).
The evaluation of intermolecular distances in MOSCITO 4 is rigorously based on the MIC.
However, the necessary data–type conversion operations are computationally demanding.
Therefore, significant speedup can be achieved by consequently reducing the number of MIC–
operations. In most cases it is fully sufficient to evaluate only one MIC translation–vector per
molecule–molecule pair. Practically, every time an atom–atom pair in the pair–list is found
to belong to a new molecule–molecule pair, a new MIC translation–vector is created. Note,
however, that this assumption is violated when relatively small systems of large molecules
are to be considered (for more details see section 4.1.5).

1Sometimes also referred to as toroidal boundary conditions.

10

The application of the minimum image technique unambiguously requires a restriction
to distances lower than Lx,y,z/2. This is the reason why the maximum cutoff–radius for the
force evaluations is typically L/2. The sometimes mentioned argument for rc < L/2 cutoff
radii to avoid an artifactual behavior being introduced by an interaction of a particle with
its own periodic image has no serious background. In fact, methods which treat long range
interactions like the Ewald summation are based on the assumption that a particle interacts
with all virtual duplicates.

3.4 The MOSCITO 4 force field model

The fundamental assumption underlying Molecular Dynamics simulation is the validity of
the Born–Oppenheimer approximation. Therefore, it is assumed that the electronic degrees
of freedom always stay in equilibrium with the changing configuration of the nuclei. Con-
sequently, the total interaction potential can be expressed as a function of the positions of
the nuclei. To be suitable for MD–simulations the interaction potential and forces have to be
given in an analytical form. Both, analytical form and parameterisation are typically referred
to as a molecular mechanical force field. Note that the potentials discussed here are based
on a pairwise additive approach2. Force fields which neglect couplings between individual
terms are often considered as diagonal force fields. This type is used mostly for MD simula-
tions. As mentioned before, there are no particular forcefield restrictions, when working with
the MOSCITO 4 simulation program. The given analytical form is flexible enough to handle
state of the art molecular force fields like AMBER and CHARMm. As we will see in a later
chapter, the Cornell et al. [5] force field can be easily used together with MOSCITO 4 .

2This is not exactly the truth: The bond–bending term is a 3-body– and the dihedral terms are in fact 4-body–
interactions.

Figure 3.2: Periodic boundary conditions. The minimum image of the grey shaded particle is indi-
cated.

11

The force field model is given in terms of the potential energy. For reasons of convenience,
the total interaction energy is typically divided into an inter– and intramolecular part

E = Einter + Eintra.

To approximate the potential interaction function the so called interaction–sites are formally
introduced.

In the case of intermolecular interactions these interaction–sites carry the non–bonded
interactions like Pauli–repulsion, electrostatic and dispersive interaction. They are modelled
by point charges qi and Lennard–Jones interactions

Einter =
1

4πε0

∑
n

∑
κ

∑
m>n

∑
λ

qnκqmλ

rnκmλ︸ ︷︷ ︸
Coulomb term

+
∑
n

∑
κ

∑
m>n

∑
λ

4 εnκmλ

{(
σnκmλ

rnκmλ

)12
−

(
σnκmλ

rnκmλ

)6}
︸ ︷︷ ︸

Lennard-Jones term

. (3.12)

Typically these sites reside on the positions of the atoms, but this need not be the case. MOSC-
ITO 4 allows introduction of massless virtual sites which have to be defined in a framework
of real atoms. A generalised force–shifting procedure which conserves total force and torque
redistributes the forces to the atoms.

To be able to model an intramolecular potential function adequately, it is necessary to

12

introduce additional terms which represent the covalent forces:

Eintra =
1

4πε0

∑
n

∑
κ

∑
λ>κ

qnκqnλ

rnκλ
fnκλ︸ ︷︷ ︸

Coulomb term

+
∑
n

∑
κ

∑
λ>κ

4 εnκλ

{(
σnκλ

rnκλ

)12
−

(
σnκλ

rnκλ

)6}
︸ ︷︷ ︸

Lennard-Jones term

+
1

2

∑
n

∑
g

kbng

(
rng(κλ) − r0ng

)2
︸ ︷︷ ︸

bond–stretching

+
∑
n

∑
g

kbmng

[(
1− exp

(
−αbmng

(
rng(κλ) − r0ng

)))2
− 1

]
︸ ︷︷ ︸

bond–stretching (Morse)

+
1

2

∑
n

∑
g

kang

(
φng(κλω) − φ0ng

)2
︸ ︷︷ ︸

bond–bending

+
∑
n

∑
g

kalng
[
1+ cos

(
φng(κλω)

)]
︸ ︷︷ ︸

linear bond–bending

+
1

2

∑
n

∑
g

kding

(
ψng(κλωτ) −ψ0ng

)2
︸ ︷︷ ︸

improper dihedral

+
∑
n

∑
g

kdpng

[
1+ cos

(
mngψng(κλωτ) −ψ0ng

)]
︸ ︷︷ ︸

proper dihedral

(3.13)

Harmonic and Morse–type bond stretching terms, and angular bond-bending terms exist for
this purpose 3. To model torsion potentials appropriately, two types of dihedral potentials
exist: (1) an harmonic improper dihedral potential, which will be used if only small distortions
of a given geometry will be allowed (eg. to define planar structures like benzene rings); (2)
a series of cosines forming proper dihedral potentials with freely tunable phase ψ0ng and mul-
tiplicity mng which will be used in more typical situations. The intramolecular nonbonded
interaction in terms of Coulomb and Lennard-Jones potentials can differ substantially from
the definitions used for the intermolecular interactions. A special set of Lennard-Jones param-
eters and a modified Coulomb-interaction reduced by a factor of fnκλ is sometimes necessary
to be able to parametrise torsional potentials properly. MOSCITO 4 allows any nonbonded

3For 180◦ bond angles a singularity free treatment according to F. Müller–Plathe [8] has been implemented called
‘linear bond bending’.

13

Figure 3.3: Specific 1-x–interactions in a molecular model. The nonbonded interaction of these com-
binations are typically treated in special way.

intramolecular interaction pair to be modified this way. Normally nonbonded 1-2 and 1-3–
interactions (see for example figure 3.3) are completely neglected. This avoids unphysical
repulsive forces between chemically bounded centers. So, the local geometry is mainly deter-
mined by bonded interactions. As mentioned before, explicitly modified 1-4 interactions are
important for torsional potentials. In very rare cases 1-5 interactions have to be modified.

In typical force fields the Lennard–Jones interactions are parameterised for pair–
interactions of identical sites. The cross-terms are obtained by applying so called combination
rules. The most frequently used are the Lorentz–Berthelot combination rules

σij =
1

2
(σii + σjj) ; εij = (εiiεjj)

1
2 .

The OPLS–forcefield, as well as the GROMOS forcefield use a geometrical mean as well for
Lennard-Jones σ

σij = (σiiσjj)
1
2 ; εij = (εiiεjj)

1
2 .

Both approaches can be used for the definition of a molecular model in MOSCITO 4 . Addi-
tionally, specific terms based on an approach different from the two mentioned here can be
defined for explicit pairs.

3.5 Handling electrostatic interactions

For most molecular systems electrostatic interactions play an important role. Because of their
long–range nature they afford a particularly different treatment than short–range interactions,
which can be simply truncated. The electrostatic force evaluation in MOSCITO 4 is based on
the Ewald–method and on a recently developed modification, the particle-mesh Ewald (PME)
approach.

14

3.5.1 The concept of Ewald summation

The Ewald ansatz is based on a solution of the Poisson equation for a periodic system. The
Poisson equation relates the electrostatic potential φ (r) to the charge distribution ρ (r)

− ε0∇2φ (r) = ρ (r) .

In reciprocal space the differential equation has an algebraic form

ε0k
2φ̂ (k) = ρ̂ (k)

and can be readily solved. k is the reciprocal lattice vector with

k = 2π (l/Lx,m/Ly, n/Lz) .

l,m,n are integers and Lx, Ly, Lz are the dimensions of the simulation box.
Due to the nature of the force field concept, the charge distribution ρ (r) is expressed in

terms of a sum of point charges qi

ρ(r) =

∫
V

∑
n

∑
i

qi δ (ri + n− r) dr. (3.15)

n are lattice vectors generating an infinite real–space lattice. Consequently, the Coulomb
contribution to the total energy of the system is

ECoul =
1

2

∑
i

qiφ(ri), (3.16)

where φ(ri) is the electrostatic potential at the position of point charge i, defined by all point
charges (except i) in the entire inifinite volume

φ(r) =
1

4πε0

∑
n

∑
i

qi

|ri + n− r|
. (3.17)

Due to the slow convergence of this sum, P.P. Ewald [9] proposed a different concept which is
based on splitting the charge distribution into two parts. The idea is to turn the character of
the interaction into a short–range behavior by adding a Gaussian charge cloud

ρGaussi (r) = −qi

α2
π

3
2

exp
(
−α2 (ri − r)

2
)

(3.18)

with opposite sign to each point charge . This will result in a fast converging “real space”
sum. Of course, it is necessary to add Gaussian charge clouds with the original sign to re-
store the original charge distribution again. The contribution of the latter part of the charge
distribution to the electrostatic potential is evaluated in reciprocal space by applying Fourier
transformation (“reciprocal lattice sum”). Due to the smoothness of this Gaussian charge dis-
tribution, it turns out that the Fourier sum converges rapidly. So, the methodology can be
summarised as an efficient replacement of a slowly converging sum by two rapidly converg-
ing ones. A careful choice of the width of the Gaussian charge distribution α is important
for the method’s efficiency. α is therefore sometimes considered as the Ewald “convergence
parameter”.

15

Figure 3.4: The original charge distribution is superimposed by Gaussian charge clouds of oppo-
site sign to achieve a short-range behavior. The potential according to the Gaussian “screening back-
ground” is calculated as a reciprocal lattice sum.

Real space sum

We can obtain the electrostatic potential at a distance r to a Gaussian charge distribution

ρGauss(r) = q

α2
π

3
2

exp
(
−α2r2

)
(3.19)

by directly writing down the Poisson equation, while making use of the system’s spherical
symmetry

− ε0
1

r

∂2 rφGauss(r)

∂r2
= ρGauss(r) (3.20)

or equally

∂2 rφGauss(r)

∂r2
=

−q

ε0
r

α2
π

3
2

exp
(
−α2r2

)
. (3.21)

16

Partial integration yields4

∂ rφGauss(r)

∂r
=

−1

ε0

r∫
∞
r ρGauss(r)dr

=
−q

ε0

(
α2

π

)3
2
r∫
∞
r exp

(
−α2r2

)
dr

=
q

2πε0

√
α2

π
exp

(
−α2r2

)
. (3.22)

A second partial integration gives

rφGauss(r) =
q

2πε0

√
α2

π

r∫
0

exp
(
−α2r2

)
dr

=
q

4πε0
erf (α r) (3.23)

where in the last line, the definition of the error function

erf(x) ≡ (2/
√
π)

x∫
0

exp(−y2)dy

has been applied. Hence, the electrostatic potential due to a Gaussian charge distribution is

φGauss(r) =
q

4πε0

1

r
erf (α r) . (3.25)

Consequently, the electrostatic potential of a point charge, which is surrounded by a Gaussian
charge distribution with opposite sign can be expressed as

φ real(r) =
q

4πε0

{
1

r
−
1

r
erf (α r)

}
=

q

4πε0

1

r
erfc (α r) . (3.26)

Therefore, the real space part of the potential energy can be expressed as5

E realCoul ≡
1

4πε0

∑
i

∑
j>i

qiqj
1

rij
erfc (α rij) . (3.27)

4 The integration boundary is chosen so that the integration constant vanishes.
5If the minimum image convention is applied, distances larger than half a box length are not allowed. Typically,

the interaction is truncated at a cutoff–distance rcut ≤ L/2. In this case, a summation over all lattice vectors n
doesn’t have to be performed.

17

Reciprocal lattice sum

As indicated in figure 3.4, the total Gaussian charge distribution ρ rec(r) consists of a periodic
sum of Gaussians at the positions rj as defined by

ρ rec(r) =
∑
n

∑
j

qj

α2
π

3
2

exp
−α2 |rj + n− r|2

 .
Fourier–transforming the charge density yields

ρ̂ rec(k) =
1

V

∫
V

ρ rec(r)e−ik·r dr

=
1

V

∫
V

∑
n

∑
j

qj

α2
π

3
2

exp
−α2 |rj + n− r|2

 e−ik·r dr

=
1

V

∫
V

∑
j

qj

α2
π

3
2

exp
−α2 |rj − r|

2
 e−ik·r dr

=
1

V

∑
j

qj exp
−

k2

4α2

 e−ik·rj (3.29)

Inserting the Poisson equation leads to

φ̂ rec(k) =
1

ε0 k2
1

V

∑
j

qj exp
−

k2

4α2

 e−ik·rj . (3.30)

Note, that the expression is defined only for k 6= 0. This is a direct consequence of the condi-
tional convergence of the Ewald sum. Neglecting the k = 0–term, however, is identical to the
assumption of embedding the periodic system in a medium with infinite dielectric constant,
the so called tin–foil boundary conditions6.

The electrostatic potential at a position r due to the Gaussian charge distribution is now
given by

φ rec(r) =
∑
k 6=0

φ̂ rec(k)eik·r

=
1

ε0V

∑
k 6=0

∑
j

qj

k2
exp

−
k2

4α2

 e−ik·(r−rj). (3.31)

Finally, the reciprocal lattice part of the electrostatic interaction can be expressed as

E recCoul ≡
1

2

∑
i

qiφ
rec(ri)

=
1

2

∑
k 6=0

∑
i

∑
j

qiqj

ε0Vk2
exp

−
k2

4α2

 e−ik·(ri−rj) (3.32)

6 In the case of a surrounding medium with vacuum permittivity, a so called surface–dipole term has to be
added. Actually, MOSCITO 4 allows only tin–foil boundary conditions.

18

For computational convenience this can be rewritten

E recCoul =
1

2ε0V

∑
k 6=0

1

k2
exp

−
k2

4α2

∑
i

qi e
−ik·ri ·

∑
j

qj e
ik·rj

=
1

2ε0V

∑
k 6=0

1

k2
exp

−
k2

4α2

 |S(k)|2 (3.33)

with S(k) as the static structure factor of the charge distribution

S(k) ≡
∑
i

qi e
ik·ri . (3.34)

Corrections for self-interaction

There are two problems which are introduced by the reciprocal lattice term. The first one is
that it considers an interaction of a particle i with a charge cloud of the same sign centred at
the same position7. The second one arises if we have a molecular system where particular
pair interactions (eg. 1-2– and 1–3–interactions) shall not be considered or others shall be
modified. So, we have to apply corrections; the so called self-interaction and molecular self-
interaction terms.

Self-interaction: The correction is generally done by subtracting the interaction energy. Re-
garding the point charge with the surrounding Gaussian charge cloud we can calculate the
interaction readily

φGauss(r = 0) =
2q

4πε0

√
α2

π
(3.35)

So, the self–energy contribution is

E selfCoul =
1

2

∑
i

qiφ
self(ri)

=
1

4πε0

√
α2

π

∑
i

q2i (3.36)

Note, that E selfCoul is a constant. Given the fact that the charges do not vary during a simulation
run, this term has to be computed only once at the beginning.

Molecular self interaction: If particular pair interactions within a molecule shall be
switched off, we have to subsequently subtract the interaction from the reciprocal lattice term.
As outlined in section 3.5.1 the electrostatic potential of a Gaussian charge distribution is

φGauss(r) =
q

4πε0

1

r
erf (α r) (3.37)

7 This is due to the fact, that the condition i 6= j is not fulfilled in the reciprocal lattice sum.

19

Consequently, the total molecular self energy is given by

Emol.selfCoul =
1

2

∑
pairs(i,j)

qiφ
Gauss(rj) + qjφ

Gauss(ri)

=
1

4πε0

∑
pairs(i,j)

qiqj

rij
erf (α rij) (3.38)

To achieve a consequent separation of inter– and intramolecular contributions to the electro-
static potential, MOSCITO 4 assumes that all intramolecular interactions are always switched
off. The electrostatic part of the (in some cases different) intramolecular interaction is then
subsequently added in a second step. Due to the fact that intermolecular distances may
change during a simulation, this correction term has to be calculated for every time-step.
Note, that in contrast to the self correction the molecular self interaction also causes corrections
on the forces.

Total electrostatic energy

To summarise, the total electrostatic energy for a molecular system is given by

ECoul =
1

4πε0

∑
n

∑
κ

∑
m>n

∑
λ

qnκqmλ
erfc (αrnκmλ)

rnκmλ︸ ︷︷ ︸
real space term

+
1

2ε0V

∑
k 6=0

1

k2
exp

−
k2

4α2

 |S(k)|2

︸ ︷︷ ︸
reciprocal lattice term

−
1

4πε0

√
α2

π

∑
n

∑
κ

q2nκ︸ ︷︷ ︸
self interaction

−
1

4πε0

∑
n

∑
κ

∑
λ>κ

qnκqnλ
erf (αrnκλ)

rnκλ︸ ︷︷ ︸
molecular self interaction

+
1

4πε0

∑
n

∑
κ

∑
λ>κ

qnκqnλ

rnκλ
fnκλ︸ ︷︷ ︸

intramolecular interaction

. (3.39)

Note, that for all intramolecular distances the application of the minimum image convention
is forbidden.

20

3.5.2 Smooth particle mesh Ewald

Due to an O(N2) behaviour of the classical Ewald approach with a fixed cutoff radius, it is
almost impossible to realize it for increasingly large systems. Alternative schemes, assign-
ing the charge distribution to a periodic grid like the particle-particle-particle-mesh (P3M)
approach according to Hockney and Eastwood [10] enable the use of highly efficient fast
Fourier transform (FFT) techniques and have been shown to overcome this limitation in prin-
ciple. The particle mesh Ewald (PME) method was inspired by this idea and achieves an
accuracy comparing well with standard Ewald summation at moderate numerical effort, and
it has the advantage that it can be implemented quite easily in existing Ewald codes [11]. In
MOSCITO 4 we use the smooth particle mesh Ewald technique using cardinal B–spline inter-
polation outlined by Essmann et al. [12]. Therefore it is useful to express the charge–weighted
structure factor in terms of scaled coordinates uα

S(k) =
∑
i

qi exp
2πi(kxuix

Kx
+
kyuiy

Ky
+
kzuiz

Kz

) , (3.40)

where Kα are integers representing the number of grid points of a real space mesh in α direc-
tion and kα are integers. The grid scaled fractional coordinates for an atom i can be written
as

uiα = Kα
(ri)α

Lα
(3.41)

where Lα (α = x, y, z) are the box lengths of a rectangular MD–cell.
S(k) is a discrete Fourier transform of a set of charges placed irregularly within the unit

cell. It is now highly advantageous to express this charge–distribution on a regular grid of
points. This enables the use of fast Fourier transform algorithms. The smooth PME–ansatz
does this by spline interpolation of the exponentials

exp
2πi(kαuiα

Kα

) ≈ bα(kα)
∑
lα

Mn(uiα − lα) exp
2πi(kαlα

Kα

) , (3.42)

where n is the order of spline interpolation and Mn(uiα − lα) defines the coefficients of the
cardinal B–spline at the scaled fractional coordinates uiα. The sum over lα , representing the
grid points, is only over a finite range of integers, since the functions Mn(u) are zero outside
the interval 0 ≤ u ≤ n. For any real number u, let M2(u) denote the the linear hat function
given byM2(u) = 1− |u− 1|. For n greater than 2, defineMn(u) by the recursion

Mn(u) =
u

n− 1
Mn−1(u) +

n− u

n− 1
Mn−1(u− 1).

The complex coefficients

bα(kα) = exp
2πi((n− 1)kα

Kα

)
×

{
n−2∑
lα=0

Mn(lα + 1) exp
2πi(kαlα

Kα

)} (3.43)

21

Figure 3.5: Example for an assignment of a point charge q to the real space mesh. The interpolation
order is four. In the three-dimensional case the charge would be distributed over 64 mesh sites.

are independent of the charge coordinates uiα and can therefore be calculated once at the
beginning of a simulation. By inserting Eq. 3.42 in Eq. 3.40 we can approximate the structure
factor S(k) by

S(k) ≈ S̃(k) = bx(kx)by(ky)bz(kz) F [Q] (kx, ky, kz), (3.44)

where the array Q is given by

Q(mx,my,mz) =
∑
i

qi Mn(uix −mx)Mn(uiy −my)Mn(uiz −mz) (3.45)

and F [Q] (kx, ky, kz) stands for the discrete Fourier transform at the grid point (kx, ky, kz) of
the array Q

F [Q](kx, ky, kz) =

Kx−1∑
mx=0

Ky−1∑
my=0

Kz−1∑
mz=0

Q(mx,my,mz)

× exp
2πi(kxmx

Kx
+
kymy

Ky
+
kzmz

Kz

) .
Inserting the approximated structure factor S̃(k) into Eq. 3.33 and using the fact that

F [Q](−kx,−ky,−kz) = KxKyKzF−1[Q](kx, ky, kz),

22

the approximate reciprocal lattice energy can be written as

ErecCoul ≈
1

2

Kx−1∑
kx=0

Ky−1∑
ky=0

Kz−1∑
kz=0

B(kx, ky, kz) C(kx, ky, kz) |F [Q](kx, ky, kz)|
2

=
1

2

Kx−1∑
kx=0

Ky−1∑
ky=0

Kz−1∑
kz=0

F−1[Θrec](kx, ky, kz)

× F [Q](kx, ky, kz) KxKyKz F−1[Q](kx, ky, kz)

=
1

2

Kx−1∑
kx=0

Ky−1∑
ky=0

Kz−1∑
kz=0

Q(kx, ky, kz)(Θrec ⊗Q)(kx, ky, kz) (3.47)

with

B(kx, ky, kz) = |bx(kx)|
2 |by(ky)|

2 |bz(kz)|
2

C(kx, ky, kz) =
1

ε0Vk2
exp
−

k2

4α2

Θrec = F [BC],

where ⊗ denotes the convolution product. Regarding the fact that Mn(u) is 2 − n times
differentiable (consider n > 2 for practical applications) and Θrec does not depend on the
particle positions, the forces on the particle positions can be obtained straightforwardly

(freci)α =
∂Erec

∂(ri)α
=

Kx−1∑
kx=0

Ky−1∑
ky=0

Kz−1∑
kz=0

∂Q(kx, ky, kz)

∂(ri)α

×(Θrec ⊗Q)(kx, ky, kz). (3.48)

The calculation at every time-step is now carried out in the following way:

1. The grid scaled coordinates uiα are calculated and the array Q is filled according to
Eq. 3.42. This step is referred to as charge assignment. Mn and its derivatives are also
obtained and stored.

2. F [Q] is calculated via an inverse 3DFFT. The array containing Q is overwritten by this
procedure.

3. Using the transformed Q array as well as B, the approximate expression for ErecCoul is
calculated using Eq. 3.47. At the same time the transformed Q array is overwritten by
the product of itself and with the arrays B and C.

4. This new array is then transformed in place by the forward 3DFFT to arrive at the convo-
lutionΘrec⊗Q. Finally, the forces are computed using the previously stored derivatives
of theMn functions to recast ∂Q/∂(ri)α.

Note that the smooth PME algorithm conserves energy, but not momentum [12]. Therefore,
the total electrostatic forces are not zero, but instead a random quantity of the order of the rms
error in the force. This leads typically to a Brownian motion of the system’s center of mass
and can lead to the occurrence of box flow (see section 3.6).

23

3.6 Temperature

In the canonical ensemble the total temperature is constant. In the microcanonical ensemble,
however, it will fluctuate. The temperature T of a system is related to the kinetic energy by

T ≡ 2

kB (3N−Nc − 3)

N∑
i=1

1

2
mi |vi|

2 . (3.49)

vi are the velocities of the N particles in the system, Nc is the total number of constraints
applied. Three degrees of freedom have to be subtracted because the system’s total linear
momentum is always considered to be zero. If this assumption is violated, because due to
numerical instabilities box–flow has occurred, the total linear momentum has some unspeci-
fied value. Note, that this will leave less and less energy in the internal degrees of freedom.
So, this will cause the system to transform into a very fast translating amorphous solid. This
undesirable situation can be avoided by consequently monitoring the total linear momentum
and by removing it if the box–flow phenomena has occurred.

3.7 Pressure

A correct pressure and pressure tensor evaluation is important for a wide variety of appli-
cations. It can be directly obtained from the virial. MOSCITO 4 makes use of a molecular
pressure tensor description

VPαβ =
∑
n

mn (vn)α (vn)β (3.50)

+
∑
n

∑
κ

∑
m>n

∑
λ

(rnm)α (fnκmλ)β, (3.51)

where V is the volume of the system, mn and vn are the molecular mass and velocity of the
center of mass, respectively. rnm is the vector between the center of mass of molecules n and
m, and fnκmλ is the force between atom κ in molecule n and atom λ in molecule m. The
constraint forces and the intermolecular interactions make no contribution to the molecular
pressure tensor. In the case of the the electrostatic interactions treated with the Ewald sum,
there are two contributions to the potential, one in the real space (which is pairwise additive)
and another in the reciprocal space (which is not). The appropriate expression according to

24

[13, 14] is

VPαβ =
∑
n

∑
κ

∑
m>n

∑
λ

(rnm)α

(
rnκmλ

rnκmλ

)
β

× 24

(
εnκmλ

σnκmλ

) 2 (σnκmλ
rnκmλ

)13
−

(
σnκmλ

rnκmλ

)7︸ ︷︷ ︸
Lennard-Jones term

+
1

4πε0

∑
n

∑
κ

∑
m>n

∑
λ

(rnm)α(rnκmλ)β

r3nκmλ

× qnκ qmλ

 2α√
π
rnκmλ exp

(
−α2r2nκmλ

)
+ erfc (−α rnκmλ)

︸ ︷︷ ︸
real space term

+
1

2ε0V

∑
k 6=0

1

k2
exp

−
k2

4α2

 |S(k)|2
δαβ −

2kαkβ

k2
−
kαkβ

2α2

︸ ︷︷ ︸

reciprocal lattice term

+
1

2ε0V

∑
n

∑
κ

(rn − rnκ)β qnκ
∑
k 6=0

1

k2
exp

−
k2

4α2

× i kα

S(k) e−ik·rnκ − S(−k) e ik·rnκ
︸ ︷︷ ︸

Correction to the reciprocal lattice term

. (3.52)

If the PME method is applied, the last correction term can be obtained directly from the recip-
rocal lattice force components according to

VPαβ = +
∑
n=1

∑
κ=1

(rn − rnκ)β (frecnκ)α (3.53)

3.8 Berendsen–Ensemble

Several methods for performing MD–simulations at constant temperature (NVT) and constant
pressure/temperature (NPT) conditions have been proposed. MOSCITO 4 uses a very simple
(and not rigorous) method to achieve this: The weak coupling scheme according to Berendsen
et al.[15]. The equations of motion are modified such that the system responds with a first
order relaxation towards the preset reference values

d T(t)

dt
=

1

τT
(T0 − T(t)) ,

d p(t)

dt
=

1

τp
(p0 − p(t)) .

25

We will refer to the generated NVT and NPT ensembles as Berendsen ensembles.

Temperature: The temperature control is achieved by rescaling the velocities at each
timestep tn with a factor sT according to

sT =
1+ KT ∆t (T0/T(tn) − 1)

1
2
. (3.54)

T0 is the reference temperature and KT determines the coupling to the external thermal reser-
voir. A KT of 0 will result in a completely uncoupled simulation, while KT =∆t−1 will rescale
the velocities completely to the desired temperature value. This strongest form of weak cou-
pling will, of course, cause a strong perturbation on the trajectory, leading to an isokinetic en-
semble. However, sometimes it is useful to apply this procedure to overcome highly strained
initial conditions without introducing large amounts of kinetic energy into the system. KT is
related to τT by

KT =
2cdfV
kBτT

, (3.55)

where cdfV is the heat capacity per degree of freedom, which is not accurately known ini-
tially. However, cdfV =kB/2 serves as a practicable approximation. The value of KT should be
chosen sufficiently large to achieve the desired average temperature value, but on the other
hand sufficiently small to avoid disturbance due to a coupling to the temperature reservoir.
Considering aqueous model systems, weak coupling is normally well achieved at a τT of 0.5
ps.

Pressure: In analogy to the temperature coupling, the pressure is controlled by scaling the
molecular centers of mass and the box dimensions by a factor

sp =
1+ Kp ∆t (p(tn) − p0)

1
3
, (3.56)

where p0 is the desired reference pressure. Kp defines the coupling strength. In contrast to
the temperature scaling, where the strong coupling limit is leading to an isokinetic ensemble,
strong pressure coupling will destroy the system. This will be due to the occurence of large
forces, when particles “overlap” according to a strong position rescaling. Kp is related to τp
by

Kp =
κT

τp
, (3.57)

where κT is the isothermal compressibility. Since the definition of the pressure depends on the
kinetic energy, the pressure coupling should not be stronger than the temperature coupling

τT ≤ τp. (3.58)

MOSCITO 4 allows an anisotropic pressure scaling, where a separate scaling is performed
for each box–dimension. A Kp of 0 will, of course switch off the coupling completely. Note,
that pressure coupling can only be done in combination with temperature coupling, because
no proper NPH ensemble is generated by this scheme.

26

4 Setting up a MD–Simulation

If you have successfully completed the installation procedure, everything is prepared for set-
ting up a simulation run. Therefore you need three files containing the simulation parameters
and the information about the system to be simulated. These have to reside in the present
working directory.

• The PARAMETER–file, which has to be called moscito.par or has to be specified
at the command line. It contains all informations specifying the simulation run like
number of steps, temperature, etc..

• The SYSTEM–file (its name has to be specified in the PARAMETER–file or at the com-
mand line). It contains the complete force–field and the molecular topology informa-
tion.

• The STRUCTURE–file, which has to be called mosin.str or mos.structure and
which holds the Cartesian coordinates, forces and velocities of the complete system at a
certain time step.

The PARAMETER– and SYSTEM–files are fully free format and you can introduce as
many blank lines, spaces and comments as you like. (Everything that follows a ’#’ will be
ignored). The file format is not case sensitive because all characters will always be converted
to lower-case. The required syntax will be outlined in the following sections.

4.1 Simulation Control: PARAMETER–file

The PARAMETER –file contains the specifications which are necessary to handle a simulation
run. They are introduced by a keyword followed by a number of possible options, which
have to be separated by commata or blanks. Note that only one keyword per line is allowed.
A typical PARAMETER–file is shown in figure 4.1. The following subsections explain the
actions which correspond to the given keywords.

4.1.1 Forcefield declaration

The complete forcefield declaration is done in a separate file, the SYSTEM–file. Note, that
the definition of a SYSTEM–file is essential for performing a simulation. If none is specified,
MOSCITO 4 will not start at all.

sysfile $1: This keyword specifies the filename $1 of the SYSTEM–file in the present directory.
It contains the information concerning the molecular system, connectivity and force
field (The outline of a system file is discussed in detail in section 4.2). Additionally,

27

several analysing tools need information (e.g. explicit atom–atom pairs for which
pair correlation functions shall be obtained), which also have to be defined in the
SYSTEM–file. Note that $1 can only refer to filenames in lower-case!

4.1.2 Startup configuration

The startup configuration tells MOSCITO 4 which structural and thermodynamical system
information shall be used at the very beginning of a simulation run.

structurefile (velocities): The structurefile option invokes the program to read the complete
system to be simulated from a STRUCTURE–file file named mos.structure . If, in
addition, the keyword velocities is specified, the atomic velocities are also read from
the STRUCTURE–file. Otherwise, MOSCITO 4 will assume a random Maxwell–
Boltzmann distribution corresponding to the temperature defined by the temper-
ature keyword.

restart: This feature allows restarting a simulation run that has been terminated acciden-
tally. It uses the information contained in the STRUCTURE–file and a separate
checkpoint–file mos.chk (counters and buffers for average values are stored here).
This procedure is meant to ensure continuity, if very long simulations have to be
handled. (The automatic generation of these files is controlled by the restartdata
command). Keep in mind that you need a STRUCTURE–file and mos.chk –file
defining the same state of a simulation run! Note, without having activated struc-
turefile velocities this option will have no effect. Normally this key will be rarely
used.

stop momentum: This option will remove the total linear and angular momenta from the sys-
tem before starting the simulation. This procedure is sometimes helpful, if, due to
numerical instabilities box–flow has occurred or a single molecule shall be simulated
in vacuo.

Note that it is, in principle, possible to start a simulation without having a STRUCTURE–
file. The build–section, defined in the SYSTEM–file allows creation of a simple molecular
crystal structure for a quick startup. Given this case, again a random Maxwell-Boltzmann
distribution of velocities is generated.

4.1.3 Force calculation

This section deals with keywords, setting up the intermolecular force evaluation. Note, that
there are two alternative neighborlist models available:

rcut $1: Radius of the cutoff–sphere for all nonbonded intermolecular site–site interactions
(Lennard-Jones and screened Coulomb interactions). All pairs with distances larger
than $1 will be neglected. Note, that for intramolecular interactions no cutoff is
applied! Typical values for molecular systems are in the range of 8.0 Å to 9.0 Å.
Since Ewald Summation is used for the electrostatic interactions and isotropic tail
corrections are applied to correct the Lennard-Jones truncation, the exact value for
the cutoff radius should not affect the simulation results (But keep in mind that it

28

#...........................Forcefield declaration
sysfile spc-e.system
#...........................Startup configuration
structurefile velocities
#restart
stop momentum
#...........................Force calculation
rcut 8.0
#neighborlist auto
neighborlist linkcell auto
rcutnb 9.5
#...........................SHAKE setup
shake 1.0e-4
#...........................Ewald summation setup
#ewald grid newton
#ewald grid fast
ewald grid
alpha 5.37
#kspace 5 5 5 27
kspace pme 20 20 20 4
conserve
#...........................MD run specifications
timestep 1.0
steps 1000
#...........................Weak coupling control
temperature 300.0
pressure 0.1
scale temperature 2.0e-3
scale pressure 5.0e-7
#scale pressure 5.0e-7 independently
#scale stop 500
#...........................MD-Output setup
firststep 1
crddata 10
xtcdata 10
veldata 10
sysdata 10
logdata 100
restartdata 200

Figure 4.1: Example moscito.par –file controlling a small simulation run of a system of SPC/E
water molecules defined in an already existing mos.structure –file. Coordinates and velocities are
read. 1000 MD–steps are performed using the NPT–weak coupling scheme. The particle mesh Ewald
method is employed, based on 20× 20× 20 grid, applying 4’th order B–spline interpolation.

affects, of course, the simulation’s performance).

Dimension of $1: Å

neighborlist ($1) (auto): This key invokes an application of a Verlet–type neighborlist, which
will result in a considerable saving of computer time and is therefore highly recom-
mended. All intermolecular pairs with distances smaller than rcutnb are considered
here. The parameter $1 controls the update frequency of the neighborlist (A value

29

$1=10 for example will cause the list to be updated statically every 10’th time-step).
Alternatively, the neighborlist auto keyword can be used. This feature ensures that
the neighborlist is updated automatically, if one site could have crossed the distance
rcutnb minus rcut with respect to any other particle (this is the safest option, so far).

neighborlist linkcell ($1) (auto): Using the linkcell option, the Verlet–type neighborlist is con-
structed via a more sophisticated linkcell algorithm. The computional cost of this
approach scales linearly with the number of particlesO(N) (Instead ofO(N2) for the
conventional approach) and is significantly faster even for moderately large systems
(>2000 interaction sites). However, due to a minor overhead, the simple approach
is superior for small systems.

rcutnb $1: Radius of the cutoff–sphere to determine the intermolecular atom–atom pairs
which will be considered in the neighborlist. It should be typically 1.5 Å to 2.0 Å
larger than the cutoff–radius rcut for the site–site interactions. However, rcutnb has
to be smaller than a half of the smallest box–length! Note, that the difference between
rcut and rcutnb affects significantly the update frequency, when the neighborlist is
updated automatically. An optimum performance is achieved in most cases when
rcutnb is selected according to the given interval.

Dimension of $1: Å

4.1.4 SHAKE setup

shake $1: The parameter $1 defines the relative tolerance for the position restraining allowed
by the SHAKE–procedure (in terms or constrained bond lengths). Taking into ac-
count that this value may influence the obtained system trajectory in a systematic
way, a tight criterion is advised for MD–simulations. A value of 10−4 is therefore
recommended. However, if due to an unfavourable starting geometry, SHAKE does
not converge, a larger value may be used for an initial small period of time (Alter-
natively, you have always the opportunity to switch to a smaller time-step).
Dimension of $1: dimensionless

4.1.5 Ewald summation setup

The concept of Ewald summation is an intrinsic part of the MOSCITO 4 MD–code. So, there
is no alternative method available and the Ewald set of keywords must be specified!

ewald (grid) (grid newton) (grid fast): Specifies the procedure for the real–space part of the
Ewald–sum. If no additional keyword is specified, the errorfunction is estimated
via a polynomial approximation [16]. Alternatively, the ewald grid keyword enables
a linear interpolation of potential and force from values stored in “lookup–tables”.
This procedure is the fastest available. A slightly more exact approximation is pos-
sible by using the Newton–Gregory forward difference interpolation scheme [1] ac-
tivated by ewald grid newton. In both cases the interpolation is done in r2–space.
The accuracy achieved by ewald grid is usually fully sufficient and therefore rec-
ommended. A third option is given by ewald grid fast keyword. In this case the
number of minimum image translations (which are rather CPU time–consuming) is
minimimzed. This is based on the experience that the atom–atom minimum–image

30

translations between two small molecules in a large system will allways be the same.
However, a check will not not performed and this procedure may lead to wrong re-
sults if the assumption fails! Since this method has been implemented in assembler
for Intel architectures it is by far the fastest available. But, it should be treated with
care.

alpha $1 : The parameter $1 (denoted as α ′) determines the relative width of gaussian charge
distribution. It is significantly responsible to balance real space and reciprocal lattice
part of the total Ewald summation. The Ewald convergence parameter α in eq. 3.39
is related to α ′ by

α =
α ′

2 rcut
, (4.1)

where rcut is the cutoff–radius defined by the key rcut. This procedure was chosen,
since it guarantees suffiently small values at the cutoff–distance and enables simu-
lations with fixed accuracy. A value of α ′=5.37 leads to a reasonable accuracy [2] ε
with

ε ≈ 4

α ′2
exp

(
−α ′

2
/4
)

(4.2)

of 1.0 10−4 in the real space sum. Note, that a proper setup of the reciprocal lattice
sum requires a consideration of the chosen values for α ′ and rcut!
Dimension of $1: dimensionless

kspace $1 $2 $3 $4 : This keyword activates the conventional Ewald technique to calculate
the reciprocal lattice term. The first three parameters ($1–$3) specify the maximum
integer values lmax,mmax, nmax for the considered reciprocal lattice vectors kmax =

2π(lmax/Lx, nmax/Lx,mmax/Lz), where Lx, Ly, Lz are the box lengths. Assuming,
that the reciprocal lattice sum should exhibit the same accuracy as the real space
term, these values can be easily determined according to [2]

(lmax,mmax, nmax) =

⌈
α ′2

4π rcut
(Lx, Ly, Lz)

⌉
(4.3)

The last parameter $4 (denoted asn2cut) specifies the squared reciprocal lattice vector
cutoff according to

k2cut = 4π2n2cut/ min
{
L2x, L

2
y, L

2
z

}
. (4.4)

Of course, n2cut should be chosen such that cutoff sphere fits optimal into the recip-
rocal lattice determined by (lmax,mmax, nmax).

Example:
The squared reciprocal integer cutoff n2cut = 27 is optimal, if your reciprocal lat-
tice vectors are defined by (lmax,mmax, nmax) = (5, 5, 5). But, consider that also
n2cut = 27, if you have a system which is elongated by factor of two in z–direction
and therefore (lmax,mmax, nmax)=(5, 5, 10)!

kspace pme $1 $2 $3 $4: This option invokes the application of the PME–method for the
reciprocal lattice term. The first three parameters ($1–$3) specify the number of

31

grid points in the x–, y– and z–direction, respectively. $4 determines the spline–
interpolation order, which has to be in the range between 4 and 10. Given a 4’th
order interpolation, a spacing between mesh sites of 1.0 Å to 1.2 Å is advised [12].
This setup will lead to an accuracy comparing well with standard Ewald summa-
tion.

conserve: The smooth particle mesh Ewald algorithm does not conserve momentum! Con-
sequently the the total net force is of the order the rms–fluctuation in the force [12].
When choosing low accuracy for the force estimation (which is in most cases a rather
reasonable approximation), the resulting Brownian motion of the total momentum
is unacceptably high and leads to a flux increasing approximately proportional to
squareroot of the simulation length. To avoid this, the conserve–keyword invokes
the total net force to be subtracted every time–step. This leads to stable simulations
even at low PME–accuracy.

4.1.6 MD run specifications

timestep $1: Defines the time-step ∆t between two configurations. The value of $1 is typ-
ically in the range between 0.5 fs and 2.0 fs . If dealing with completely rigid
molecules like SPC/E–water, or flexible molecules, where all bonds are constrained,
a time-step of 2.0 fs is appropriate. If only bonds to hydrogen atoms are fixed, a
time-step of 1.0 fs is advised. For totally flexible molecules the time-step should not
exceed 0.5 fs [17] .
Dimension of $1: fs

steps $1: Specifies the number of time-steps the simulation will extend to. This integer has
to be multiplied by the actual time-step ∆t to get the total simulation time.

4.1.7 Weak coupling control

This section deals with simulations of NPT– and NVT–ensembles realized by the weak cou-
pling method.

temperature $1: This keyword determines the desired average temperature T0. This essential
key must be specified!
Dimension of $1: K

pressure $1: This keyword determines the desired average pressure p0. This essential key
must be specified!
Dimension of $1: MPa

scale temperature $1: Determines the coupling to the thermal–reservoir. $1 has to be spec-
ified in terms of ∆tKT . Note that according to this formulation, a change of the
integration time-step will affect the coupling strength. However, a value of “1” will
result in total velocity rescaling. A coupling of “0” will lead to a totally uncoupled
simulation. This is the default value if this keyword is not specified.

Example:
Given a coupling constant of 2.0 10−3, a heat capacity per degree of freedom of

32

kB/2 and a time-step of 1.0 fs, the temperature relaxation time τT is 0.5 ps.
Dimension of $1: dimensionless

scale pressure $1: Determines the coupling to the pressure–reservoir. $1 has to be specified
in terms of ∆tKp. A coupling of “0” will switch off coupling completely. This is the
default value.

Example:
Consider a simulation of an aqueous model–system with a coupling constant of
5.0 10−7 MPa−1. Given the isothermal compressibility for water at 293 K and 1
atm of κT = 45.91 10−6 bar−1 [18] and a time-step of 1.0 fs, we obtain a reasonable
pressure relaxation time τp of 1.09 ps.

Dimension of $1: MPa−1

scale pressure $1 independently : Defines the pressure–coupling the same way as above.
But, box–dimensions relax individually due to the corresponding pressure tensor
components.

Dimension of $1: MPa−1

scale stop $1: This keyword enables a switch–off of any scaling at a certain time-step $1. If
this key is disabled, the scaling persists until the simulation stops.

4.1.8 MD-Output control

The aim of a typical MD–simulation is to create a system–trajectory representing the system
at equilibrium. MOSCITO 4 allows one to store several aspects concerning this trajectory in
different files. The specific file–formats will be discussed in detail in section 4.3. This section
deals with keywords controlling the simulation output:

firststep $1: Specifies the time-step at which any trajectory output will be produced. The
intention of this is to enable an initial equilibration period where no data is aquired.
But, typically one will perform a separate equilibration run, so this value will be
mainly set to ’1’.

crddata $1: This option invokes the configurational part of the system–trajectory to be writ-
ten to an unformatted file named mos.crd (an alternative filename can be specified
at the command line). It contains the xyz–coordinates of all atomic sites as well as
the box–dimensions. The parameter $1 specifies the output frequency (e.g. A “1”
means that every configuration is written, and so forth. . .).

xtcdata $1: This option invokes the configurational part of the system–trajectory to be written
to an unformatted file named mos.xtc (an alternative filename can be specified at
the command line). It contains the xyz–coordinates of all atomic sites as well as
the box–dimensions. The parameter $1 specifies the output frequency (e.g. A “1”
means that every configuration is written, and so forth. . .).

veldata $1: This option invokes the momentum part of the system–trajectory to be written to
an unformatted file named mos.vel (an alternative filename can be specified at the
command line). It contains the components of all atomic velocities. The parameter
$1 specifies the output frequency.

33

sysdata $1: This key invokes the thermodynamic data (e.g. Temperature, pressure, box-
dimensions, potential energy. . .) to be written to a formatted file called mos.data
(an alternative filename can be specified at the command line). The parameter $1
specifies the output frequency.

logdata $1: A LOG–file named mos.log (an alternative filename can be specified at the com-
mand line) is created every time the MOSCITO 4 program is started. It contains all
informations regarding the present simulation run (Definition of the forcefield, sim-
ulation parameters. . .). Additionally, with the logdata key it is possible to generate a
protocol of rolling averages of the same properties as written to the mos.data –file.
$1 characterises the length of every sampling period.

restartdata $1: Every $1’th step MOSCITO 4 writes a formatted file called
mos.structure_out or mosout.str (an alternative filename can be speci-
fied at the command line), which contains the complete configuration. Additionally,
all counters and buffers are saved in mos.chk to enable a smooth restart of a
simulation.

4.2 Forcefield Definition: SYSTEM–file

The SYSTEM–file contains all information about the force field and the specific molecular
setup. It is generally organised in closed environments and commands slightly resembling
to LATEX–coding. There is only one command per line allowed. Each line may contain up
to 256 characters and up to 20 words. A word is a string of characters, which can be sep-
arated by blanks, commas and “=”. An environment is defined by a region limited by
a begin{ environment–name} and an end{ environment–name} command. Environments are
also referred to as “sections” and “subsections”. The overall structure of a SYSTEM–file can
be divided in three different parts or “chapters”, which have to be defined in the given order:

1. The header–chapter, where interaction sites are defined by their mass, charge and
Lennard-Jones parameters.

2. The molecule–chapter, where molecular entities are formed out of the above defined in-
teraction sites.

3. the footer–chapter, which can be used for quite different things for analysing purposes.
With respect to plain simulation the most prominent representative of a footer–chapter
will be the build–section.

A typical SYSTEM–file containing all three mentioned chapters is shown in figure 4.2. The
following text deals with a detailed explanation of what can be done.

4.2.1 Header–chapter

The header–chapter has always to be the first chapter in a SYSTEM–file. It contains the defi-
nition of interaction sites

34

#--
MOSCITO SYSTEM-file for SPC/E water
source: H.J.C. Berendsen, J.R. Grigera and T.P. Straatsma,
J. Phys. Chem. 91, 6269 (1987).
#--

#------------------- header chapter -----------------------------------

begin{sites} # charge (e) mass (g/mol)
OW -0.8476 16.0
HW 0.4238 1.0

end{sites}

begin{lorentz_lj} # sigma (A) epsilon (K)
OW 3.1656 78.2
HW 0.0 0.0

end{lorentz_lj}

#------------------- molecule chapter ---------------------------------

begin{molecule}

label spc-e

begin{configuration} # site x y z (A)
HW 0.0 0.0 0.0 # 1
OW 1.0 0.0 0.0 # 2
HW 1.3333 0.9428 0.0 # 3

end{configuration}

begin{constraints} # Distance constraints (A)
1 2 1.0
2 3 1.0
1 3 1.6313

end{constraints}

begin{exclude}
all

end{exclude}

end{molecule}

#-------------------- footer chapter ----------------------------------

begin{build}
ecell 3.10635 3.10635 3.10635
duplicate 5 5 5
frac spc-e 0.0 0.0 0.0

end{build}

Figure 4.2: Example SYSTEM–file to define the empirical SPC/E–model for water.

The site–environment

The site –environment defines interaction site–types. Mass and charge are assigned to a
certain site–type. The outline of this section has always to be the following:

begin{sites}
$1 $2 $3

...
end{sites}

35

Variable $1 defines the site–type by a string which can be up to 10 characters long. $2 specifies
the site–charge (in |e|) and $2 defines the site–mass (in g mol−1). The mass of a site–type can
be set to zero if virtual sites shall be considered (see the molecule–section for details). But,
keep in mind that this feature should be treated with care.

Defining Lennard-Jones interactions

The Coulomb interaction between site–types has already been determined in the sites–section.
The nonbonded Lennard-Jones type interaction has to be specified in a separate section, be-
cause different combination rules may be applied.

The most general approach is to define any pair interaction explicitly. This can be done by
the lj –environment

begin{lj}
$1 $2 $3 $4

...
end{lj} ,

where $1 and $2 define the explicit pair of interaction sites, $3 defines the Lennard-Jones
σij (in Å) and $4 specifies the Lennard-Jones εij (in K). Due to the fact, that the number of
terms can become quite large if the number of site–types increases, it is often useful to let the
simulation program calculate the cross–terms directly. Therefore, MOSCITO 4 provides the
following two schemes to determine cross terms:

Lorentz-Berthelot mixing rules: The widely applied Lorentz–Berthelot rules use a geomet-
rical mean for the εij and a arithmetic mean for the σij. This scheme can be activated by using
the lorentz_lj –environment

begin{lorentz_lj}
$1 $2 $3

...
end{lorentz_lj} ,

where only the Lennard-Jones parameters for identical pairs of type $1 have to be specified.
$2 defines the Lennard-Jones σii (in Å) and $3 specifies the Lennard-Jones εii (in K).

OPLS mixing rules: Alternatively, some forcefield–concepts (like the classical OPLS–
forcefield) are based on estimating a geometric mean for both, σij and εij. This can be realized
by the opls_lj –environment

begin{opls_lj}
$1 $2 $3

...
end{opls_lj} ,

where there parameters $1–$3 are defined the same way as in the lorentz_lj –
environment.

Sometimes a molecular pair potential is generally based on one of the two mentioned con-
cepts, but a few specific terms have to be modified. This can be easily realized in MOSCITO

36

4 by first using the opls_lj – or lorentz_lj –environment in combination with a subse-
quent lj –section, where these pairs are defined explictly.

Often (for example in SPC/E–water in figure 4.2), specific sites shall not exhibit a Lennard-
Jones interaction at all. This can be realized by setting both parameters σii and εii to zero. All
corresponding cross–terms will also be set to zero.

4.2.2 Molecule–chapter

In the molecule chapter a certain molecule-type is defined by a molecule –environment. In
principle, there is no limitation of different molecule–types in a simulation. Of course, these
molecules have to consist of sites which have been defined before in the header–chapter. The
molecular properties are defined by a number of sub–environments (or “subsections”) and
commands, which will be discussed in the following sections

The label–command

Like the mentioned atom–types, any molecule–type has to be specified by a label. The label –
command has to be used to identify molecular type by a string which can be up to 10 charac-
ters long.

label $1

The label –command can be placed anywhere in a molecule –environment. (But of course,
not in one of the following mentioned sub–environments.)

The freedom–command

The freedom –command can be used to specify the degrees of freedom of a molecular type
by hand.

freedom $1

Normally, the degrees of freedom are calculated automatically as 3N − Ncon, where N is
the number of atoms in a molecule and Ncon is the number of constraints applied. How-
ever, in some (actually, very rare) cases it is useful to define more constraints than would
be necessary, to achieve a better convergence behaviour of the SHAKE procedure (an exam-
ple for this might be a rigid CCl4 model, where all C–Cl bonds and Cl–Cl distances have to
be constrained). In such cases the number of degrees of freedom can be set explicitly. The
freedom –command can be placed anywhere in a molecule –environment as well .

The configuration–environment

The configuration –environment is perhaps the most important of the discussed sub–
environments

begin{configuration}
$1 $2 $3 $4

...
end{configuration} .

37

Note that any molecule –section has to contain a configuration –environment! It always
has to be the first sub–environment in a molecule –section because all other environments
make use of the order of sites which is declared in this section. So, all atoms in a molecule–
type will be identified by their position in the configuration –environment. The first pa-
rameter $1 specifies the atom–type and the following three parameters ($2–$4) define Carte-
sian coordinates (in Å) of this site.

Applying constraints: The constraints–environment

The definition of distance–constraints within a molecule can be done by the constraints –
environment

begin{constraints}
$1 $2 $3

...
end{constraints} .

All distances between the atom pairs ($1,$2) will be kept fixed during a simulation run by
application of SHAKE. As mentioned above, the parameters $1 and $2 refer to the position
of a site in the configuration –environment (e.g. a “3” will refer to the third atom,. . .).
The parameter $3 defines the desired constraint–distance in Å. If no parameter $3 is given
or it is specified as zero, the distance will be calculated from the coordinates defined in the
configuration –environment.

Switch off explicit interaction pairs: The exclude–environment

In specific cases it is necessary to switch off intramolecular nonbonded interactions explic-
itly. This has to be done normally for atoms involved in bonds (1–2 interactions) and bond–
bending interactions (1–3 interactions). MOSCITO 4 allows switching off any intramolecular
interaction pair explcitily without significant loss of performance. For this purpose these pairs
have to be declared in an exclude –environment

begin{exclude}
$1 $2

...
end{exclude} .

The specified pairs do not contribute to the nonbonded intermolecular potential any longer.
However, it is possible to add again a modified nonbonded interaction for the pair ($1,
$1), using the nonbonded –environment discussed below. A special shorthand form of the
exclude –environment can be activated by applying the all –keyword

begin{exclude}
all

end{exclude} .

This key will switch off all intramolecular interactions in the given molecule. This feature has
already been used in the SPC/E SYSTEM–file shown in figure 4.2.

38

Defining virtual sites: The virtual–environment

MOSCITO 4 allows treatment of potentials exhibiting massless, so-called virtual sites. Many
simple models for water and ammonia use point charges defined at positions off from atoms.
MOSCITO 4 uses a scheme which distributes the forces while conserving the total force and
torque on a rigid framework of real sites. Therefore the virtual site has to be given as a linear
combination of the position of these sites

rvirt =
∑
i

ci ri with
∑
i

ci = 1.

Note, that the coefficients ci may also be negative. The forces are shifted the to the reference
sites i according to

f ′i = fi + cifvirt.

This distribution–procedure is necessary, since the MOSCITO 4 –code is entirely atomistic
and therefore zero masses would result in infinite accelerations. In principle, there is no lim-
itation of the number of framework–sites. Don’t forget to check carefully that the defined
virtual sites do exhibit zero masses. Otherwise, the forces will not be distributed correctly. A
virtual site can be defined in a virtual –environment given by

begin{virtual}
$1 ($2 $3). . .

...
end{virtual} .

The parameter $1 identifies the position of the virtual site in the configuration –
environment. $2 specifies a real site i and $3 denotes the corresponding coefficient ci. The
bracket indicates that there can be, of course, more than one (at least, the minimum is two)
reference–sites, which have to be added subsequently. Keep in mind, that any line in a
virtual –environment is used to define a new virtual site!

In addition it is now possible to add as well out-of-plane site-definitions. This feature has
been recently included since there are some models such as the TIP5P model for water where
this is required. The syntax is the following:

begin{virtual}
$1 0 $2 $3 $4 $5 $6 $7 $8

...
end{virtual} .

The reference to site "0" indicates that this a definition for an out-of-plane site. $3, $5 and $7
specify the reference sites while $4, $6 and $8 denotes the corresponding coefficients c1, c2
and c3 with c1 + c2 + c3 = 1. Thevirtual site is defined according to

rvirt = c0 [(r2 − r1)× (r3 − r1)] +

3∑
i=1

ci ri .

Parameter $2 specifies co thus giving the distance from the plane defined by sites 1 2 and 3.

39

Defining bonds: The bond–environment

Within a bond –environment it is possible to define two distinct types of bonded pair interac-
tions: A harmonic spring–bond and a Morse–type pair potential.

Harmonic bond: A harmonic spring–bond between two sites is defined by writing the label
harmonic at the very beginning of each line.

begin{bond}
harmonic $1 $2 $3 $4

...
end{bond} ,

The parameters $1–$4 are defined according to:

Vbκλ = 1
2 k

b
(
rκλ − r0

)2
$1, $2 κ, λ

$3 kb kJ mol−1 Å
−2

$4 r0 Å

kb represents the force constant and r0 denotes the corresponding equilibrium distance for
the intramolecular pair κ–λ.

Morse–type bond: An anharmonic Morse–type bond is defined in the same environment
using a morse –keyword instead of harmonic .

begin{bond}
morse $1 $2 $3 $4 $5

...
end{bond} ,

The parameters $1–$5 are defined according to:

Vbmκλ = kbm
(1− exp

(
−αbm

(
rκλ − r0

)))2
− 1

$1, $2 κ, λ
$3 kbm kJ mol−1

$4 αbm Å
−1

$5 r0 Å

kbm denotes the dissociation–energy, r0 specifies the equilibrium distance and αbm charac-
terises the width of the potential well.

40

Defining bond–bending interactions: The angle–environment

Two types of harmonic bond–bending interactions can be considered. The first one is rather
general, while the second is restricted to linear bond angles avoiding the occurrence of a
singularity and therefore numerical instabilities at the 180◦ bond angle. Both types are defined
in an angle –environment:

General approach: A normal harmonic bond–bending interaction is defined in an angle –
environment according to

begin{angle}
$1 $2 $3 $4 $5

...
end{angle} ,

where the parameters $1–$5 are defined such that

Vaκλω = 1
2k
a
(
φκλω − φ0

)2
$1, $2, $3 κ, λ,ω
$4 ka kJ mol−1 rad−2

$5 φ0 degrees

ka is the force constant and φ0 the equilibrium bond–angle. Note, that this setup defines a
(κ− λ−ω) bond angle located at site λ.

Linear bond angles: Due to the limited numerical accuracy, the general scheme may lead
to unstable trajectories when dealing with 180◦ bond angles. F. Müller–Plathe [8] showed
that the ansatz presented below can be used to avoid the problem. To enable this option the
bond–bending definition has to begin with a linear –keyword

begin{angle}
linear $1 $2 $3 $4

...
end{angle} .

The parameters $1–$4 are defined according to:

Valκλω = kal
1+ cos (φκλω)

$1, $2, $3 κ, λ,ω
$4 kal kJ mol−1

kal is the corresponding force constant. Its numerical value is identical to to value for the
general representation (although the unit is different).

41

Defining dihedral–potentials: The dihedral–environment

For MOSCITO 4 there are currently two forms of dihedral potentials available. Both have to
be defined in a dihedral –section.

Proper dihedrals: using the dihedral –environment with a proper –keyword in front of
each line

begin{dihedral}
proper $1 $2 $3 $4 ($5 $6 $7)

...
end{dihedral} ,

an anharmonic dihedral potential has to be defined in terms of a Fourier series with an, in
principle, arbitrary number of cosine–terms. The number of terms specifying the interaction
for the site quadruple (κ− λ−ω− τ), where (λ−ω) represents the central bond, is therefore
also technically not restricted

Vdpκλωτ = kdp
1+ cos

(
m ψκλωτ −ψ0

)
$1, $2, $3, $4 κ, λ,ω, τ
$5 kdp kJ mol−1

$6 m integer
$7 ψ0 degrees

kdp is the force constant, m defines the multiplicity and ψ0 the phase–angle of one term in
the Fourier series. The brackets indicate that more than one set of parameters can be defined
in one line (Actually, four sets are allowed). The number of terms, however, can be increased
by defining more terms for the same quadruple in further lines.

Improper dihedrals: In this work we will consider only harmonic dihedral potentials as im-
proper dihedrals1 They are invoked by an improper –keyword according to

begin{dihedral}
improper $1 $2 $3 $4 $5 $6

...
end{dihedral} .

The parameters $1–$6 are defined the following way.
1There is some uncertainty about the term “improper dihedral”. In the AMBER forcefield [5] for example im-

proper dihedrals are defined topologically (which will simply be expressed by using a different sequence
κ–λ–ω–τ). Using the AMBER forcefield it may thus happen that you have to define an improper dihedral
potential as proper Fourier–type dihedral potential.

42

Vdiκλωτ = 1
2k
di
(
ψκλωτ −ψ0

)2
$1, $2, $3, $4 κ, λ,ω, τ
$5 kdi kJ mol−1 rad−2

$6 ψ0 degrees

kdi is the force constant and ψ0 represents the equilibrium angle. The site–quadruple (κ, λ,
ω, τ) is defined analogously to the previous section. But, in contrast to the proper –dihedral
it wouldn’t make any sense to define more than one term for one site–quadruple (κ, λ,ω, τ).

Modified nonbonded intramolecular interactions:
The nonbonbonded–environment

In almost all general purpose forcefields, the parameterisation of the 1–4–interactions is dif-
ferent from the general parameterisation2. However, MOSCITO 4 enables any intramolecular
interaction to be modified specifically without facing a significant loss of performance. In
most cases, of course, 1–4 interactions will be the topic. This feature can be defined for a set
of atom pairs ($1,$2) in a nonbonded –environment in the following form

begin{nonbonded}
$1 $2 $3 $4 $5

...
end{nonbonded} ,

where the variables are defined as

Vnbκλ = 1
4πε0

f qκ qλrκλ
+ 4 ε

{(
σ
rκλ

)12
−
(
σ
rκλ

)6}

$1, $2 κ, λ
$3 σ Å
$4 ε K
$5 f dimensionless

f is the Coulomb scaling factor and σ and ε define an explicit Lennnard-Jones interaction.
Note, that the nonbonded –environment defines an additional interaction for an atom pair
(κ, λ). If this interaction shall replace the original parameterisation (which will be desired in
almost all cases), the pair (κ, λ) has also to be defined in the exclude –environment.

2 In the AMBER forcefield [5], the 1–4 Coulomb interaction and the 1–4 Lennard-Jones interaction are scaled by
factors of 0.8333 and 0.5, respectively.

43

begin{z-matrix}
1
2 1 .9600
3 2 1.4100 1 108.5001
4 3 1.0900 2 109.5000 1 60.0000
5 3 1.0900 2 109.5001 1 180.0000
6 3 1.0900 2 109.5000 1 -60.0000

zfreeze 2 2
zfreeze 3 2
zfreeze 4 2
zfreeze 5 2
zfreeze 6 2
end{z-matrix}

Figure 4.3: Example z-matrix –environment used to define the structure of methanol in internal co-
ordinates. All bond lengths will be constrained to the given values. Such a representation can be used
to perform a geometry optimisation in internal coordinates in order to refine potential parameters.

Internal coordinates: The z-matrix–environment

For potential development purposes it is often useful to express the molecular structure in
internal coordinates. MOSCITO 4 allows one to define a structure in terms of a molecular
z-matrix. The outline of a z-matrix –environment is shown in figure 4.3. The first number
identifies the centre a which is defined by its position in the configuration –environment.
The numbers in the second column refers to a site b, which is separated from site a by a
distance (in units of Å) which is given in the third column. The site c in the fourth column
forms a bond angle a–b–c given in column five (in degrees). Column six finally specifies a
dihedral angle with respect to site d, given in the last column (also in degrees). Note that
the sites which will be referred to have to be defined above in the z-matrix. The zfreeze –
keyword enables particular degrees of freedom to be constrained to the given values. The
keyword has to be followed by two numbers: The first one refers to the line of the z–matrix
and the second number identifies the degree of freedom (A ’2’ refers to the bond–distance, a
’3’ to the bond–angle and a ’4’ to the dihedral angle).

4.2.3 Footer–chapter

The purpose of this part of the SYSTEM–file is manyfold. In some sense it can be used for
any purpose you can imagine, especially for the set of utility programs. However, for the
MOSCITO 4 –simulation program three different tasks can be defined through this part.

The build–environment

The build –environment has to be seen as a “quick and dirty” way to generate a rather simple
“crystal”–structure of a molecular system. We have to emphasise that this part is by no means
intended to produce real crystal structures. It is just meant to generate a structural precursor
for MD–simulations of liquids.

44

begin{build}
ecell $1 $2 $3
duplicate $4 $2 $3
frac $1 $2 $3 $4

...
end{build} ,

There are three different commands provided in a build –section:

• The ecell –command defines the size of a rectangular unit cell. The unit cell constants
$1–$3 have to be given in Å.

• The duplicate –command defines how often this cell is replicated in each direction to
form the entire system. The number of replications are specified by the integers $1–$3.

• The frac –command places a molecule, identified by its label $1 somewhere within
the unit cell. It is moved by its centre of mass at a position in the cell defined by a
set of fractional coordinates given by $1–$4. The orientation is directly taken from the
corresponding configuation –environment.

Of course, there can be only one ecell – and duplicate –command, but an unlimited num-
ber of frac –commands.

Calculating electric field gradients: The efg–environment

MOSCITO 4 allows monitoring the electric field gradient (EFG) at the position of interaction
sites. However, this feature should be used with care, since it is still in a more or less experi-
mental stage. The EFG–tensor

T̃(ri) =

Vxx Vxy Vxz
Vyx Vyy Vyz
Vzx Vzy Vzz

 with Vαβ =
∂2Vel(ri)
∂α∂β

is calculated due to the surrounding point charges defined by all molecules whose centres of
mass have a distance less than the cutoff radius with respect to the centre of interest. Vel(ri)
denotes the electrostatic potential at the position ri. The electric field gradient fluctuation
at the position of quadrupolar nuclei represents by far the most important contribution to
the quadrupolar nuclear relaxation processes. So, simulations in combination with nuclear
magnetic resonance experiments can be used to gain some insight into dynamical processes
at the molecular level. Of, course this method can only be applied to centres with zero electric
field gradient in the unperturbed state (like monovalent ions or noble gases).

The EFG–calculation setup is done in an efg –environment

begin{efg}
$1 $2

...
end{efg} ,

where $1 specifies the number of a molecule (not the number of the molecule type!) in the
present simulation and $2 denotes the position of the site to monitored. (e.g. a combination
like ’213 4’ will lead to a monitoring of site ’4’ of molecule number ’213’). It is possible, of
course, to study more than one site at one time.

45

The six distinct tensor components are written every step to an unformatted file named
mos.EFG in units of V nm−2 using the following write statement:

write(40) ((sngl(efg_ten(i,j)),j=1,6),i=1,n_efg)

The stored components per monitored site refer to Vxx,Vyy,Vzz,Vxy,Vxz,Vyz in exactly the
given order.

Introducing harmonic intermolecular interactions: The umbrella environment

In order to constrain the distance between selected molecules in a simulation it is sometimes
useful to define a harmonic interaction between certain sites on distinct molecules. This fea-
ture can be seen as a simple way to introduce intermolecular umbrella sampling. Alterna-
tively, one would have also the opportunity to define a “supermolecule” containing the def-
initions of both molecules in combination with an additional harmonic force. However, this
is by far more complicated than the simple approach discussed here. The introduction of an
umbrella–force can be achieved in an umbrella environment according to

begin{umbrella}
$1 $2 $3 $4 $5 $6

...
end{umbrella} ,

where the parameters $1–$6 are defined as

Vumbnκmλ = 1
2 k

umb
(
rκλ − r0

)2
$1, $2 Site κ on molecule n
$3, $4 Site λ on moleculem

$5 kumb kJ mol−1 Å
−2

$6 r0 Å

$1 and $3 define the site-number and $2 and $4 refer to the position of the molecule in the
actual simulation. The index quadruple $1–$4 defines the pair of sites between which a
harmonic interaction will be established.

4.3 File–formats

This section deals with a detailed description of the file formats used to store all aspects con-
cerning a simulation run.

4.3.1 STRUCTURE–file

The STRUCTURE–file is perhaps the most important file because it contains the complete
description of the considered molecular system. It is tightly connected with the SYSTEM–file,
because it refers to molecular and site definitions therein. Figure 4.4 shows the beginning of a

46

1.972428 1.972428 1.972428
256

spc-e
1 3 1

hw 2
.39353281E-01 .20456994E+01 -.26533587E-02
.65106947E+00 -.43355057E+00 -.76593375E+00

-.28045224E+02 .24366040E+03 .16124436E+03
ow 1

.78211405E-01 .19564991E+01 .20441237E-01

.59788496E+00 -.25661374E+00 .21100554E-01
-.53825450E+03 -.47258256E+03 -.14353496E+04

hw 2
.11928816E+00 .19609119E+01 .11150840E+00
.11833571E+01 .70877146E+00 -.28225799E+00
.23300606E+03 .13410653E+02 .58289987E+03

spc-e
1 3 2

hw 2
.87808494E-01 .30327984E+00 .27610312E+00
.56717821E+00 -.24745483E+00 .58088539E+00
.33250418E+03 .66080997E+03 -.62661757E+02

ow 1
.51147165E-01 .22942869E+00 .21951730E+00
.90989275E+00 .21248855E+00 -.25044968E+00

-.50399382E+03 -.10836540E+04 .56457409E+03
hw 2

.65719289E-01 .25135206E+00 .12304441E+00

.12273978E+01 .11455106E+01 .41671700E-02

.42281663E+03 .48262606E+03 -.30039610E+03

.45605346E+03 .34020031E+03 -.27626695E+03
.
.
.

Figure 4.4: Example STRUCTURE–file containing positions, velocities and forces of 256 SPC/E
molecules.

STRUCTURE–file containing an ensemble of water molecules. The outline of the file is always
the following: At first there is an initial section consisting of two lines: the first line contains
the simulation cell dimensions (in nm), while the second specifies the number of molecules in
a simulation N. What follows is a description of N molecules: The first line is empty or may
contain a remark. The following line contains the molecule label (the label is only used for
a better readability and is in some sense redundant). The third line in a molecule definition
contains three numbers: The first number specifies the molecule type referring to the SYSTEM–
file (A ’1’ will refer to the first molecule –environment, a ’2’ to the second an so forth. . .).
The second gives the number of sites per molecule M and the third one is the actual number
of the current molecule (the last term is again unimportant and is meant to make editing
by hand a bit easier). Any molecule definition consist of M site definitions: The first line
contains the site–label and the number of a site in the SYSTEM–file (Again, only the number

47

is important), followed by three lines holding the Cartesian coordinates (in nm), the atomic
velocities (in nm ps−1) and the atomic forces (in kJ mol−1 nm−1), respectively. Note that the
file is processed list–directed, making it easier to modify a system by hand. However, due to
the presence of tools which allow a rather flexible STRUCTURE–file handling this will only
be rarely necessary.

4.3.2 LOG–file

The LOG-file mos.log is created every time the MOSCITO 4 simulation program is started. It
contains thoroughly documented information about what the simulation program does. The
output is clearly written in a human–readable form. So, it is recommended to take a look at
this file to check whether the simulation input was processed correctly. An example LOG–file
resides in ./examples/SPCE_water/ref.log . Additionally it contains rolling averages
of all available thermodynamic system properties (the averaging period can be specified in
moscito.par) and a detailed analysis of program timings.

4.3.3 DATA–file

The DATA–file contains thermodynamic data concerning a simulation run. It is a formatted
file, where the parameters listed below are written periodically. Each time-step an additional
line is written using format(i9,26f16.6) in following order:

General:
1 Actual time-stepm
2 Actual time-step ∆tm ps
3 Box-size Lx nm
4 Box-size Ly nm
5 Box-size Lz nm
6 Temperature K
7 Pressure MPa

Energy:
8 Total energy kJ mol−1

9 Kinetic energy kJ mol−1

10 Potential energy kJ mol−1

Potential energy:
11 Intermolecular interaction kJ mol−1

12 Intramolecular interaction kJ mol−1

Intermolecular interaction:
13 Lennard-Jones interaction kJ mol−1

14 Coulomb interaction (real space) kJ mol−1

15 Coulomb interaction (reciprocal lattice) kJ mol−1

16 Coulomb interaction (self correction) kJ mol−1

17 Coulomb interaction (molecular self correction) kJ mol−1

Intramolecular interaction:
18 Harmonic bond kJ mol−1

19 Morse bond kJ mol−1

20 Harmonic bond bending kJ mol−1

21 Linear bond bending kJ mol−1

22 Improper dihedral kJ mol−1

23 Proper dihedral kJ mol−1

48

Misc.:
24 Umbrella interaction kJ mol−1

25 Pressure (x-direction) MPa
26 Pressure (y-direction) MPa
27 Pressure (z-direction) MPa

However, each file has an initial header-part where the given parameters are described
and which is 29 lines long. Note that each energy value is given as “per molecule”. So, the
values have to be multiplied by the actual number of molecules to get the total energies.

4.3.4 CRD–file

The unformatted CRD–file holds all Cartesian coordinates. The first value in a CRD–file is a
4 byte integer, specifying the number of sites in the simulation (natoms). Each time-step, the
x,y,z–coordinates and simulation box dimensions are written by

write(20) (sngl(box(i)),i=1,3),
. (sngl(x(i)),i=1,natoms),
. (sngl(y(i)),i=1,natoms),
. (sngl(z(i)),i=1,natoms)

All coordinates box-lengths are given in nm. Note that the molecular trajectories are folded
into the central box with respect to their centre of mass. This means, whenever a molecule’s
centre of mass leaves the central box on one side, the complete molecule is shifted to the oppo-
site side. This procedure ensures that all intramolecular distances stay correct. However, the
trajectories have to be unfolded again, when dynamical properties like translational diffusion
coefficients are calculated.

4.3.5 XTC–file

The unformatted XTC-file format based on the XRDF-libraries written by F. Hoesel. The li-
braries are be used to store Cartesian coordinates more efficiently. Applying a reasonable
real space resolution of about 1 pm and making use of correlations in the data this leads to
substantially more compact coordinate files (About a factor of three compared to the stan-
dard CRD-format). Although a unformatted binary format, the XTC-files are machine inde-
pendent. Moreover, several programs such as the VMD (Visual Molecular Dynamics) tool
of the Theoretical Biophysics Group at the University of Illinois in Urbana Champaign (see
http://www.ks.uiuc.edu/Research/vmd/) support the XTC-format. There is a con-
version tool (crd2xtc) which interconverts both formats into each other.

4.3.6 VEL–file

The unformatted VEL–file holds all atomic velocities. The first value in a VEL–file is again
the number of interaction sites. The velocities are written according to

write(25) (sngl(vx(i)),i=1,natoms),
. (sngl(vy(i)),i=1,natoms),
. (sngl(vz(i)),i=1,natoms)

in units of nm ps−1.

49

5 MOSCITO Command Reference

This command reference gives an overview over the set of simulation and utility programs
that come with the MOSCITO 4 simulation package. Some programs require information
which is not contained in the STRUCTURE-file only (e.g. the interaction parameters, bonding
definitions, etc.). These programs require the additional presence of a moscito parameter-file
and (specified therein) a SYSTEM-file. In any case the necessary files are always indicated. In
most cases the data is read from 〈STDIN〉 and written to 〈STDOUT〉, so that a more complex
operation can be performed by using a combination of commands by piping the data.

5.1 Running a MD Simulation

5.1.1 moscito

Needs: PARAMETER-file, SYSTEM-file, STRUCTURE-file or GROMOS-file
Output files: LOG-file, DATA-file, CRD-file, XTC-file, VEL-file, STRUCTURE-file
GROMOS-file
Usage: moscito -par #PARAMETER-file -sys #SYSTEM-file -in #STRUCTURE-file -
out #STRUCTURE-file -gin #GROMOS-file -gout #GROMOS-file -crd #CRD-file -xtc
#XTC-file -vel #VEL-file -dat #DATA-file -log #LOG-file -v #level -help

Optional Parameters:
-v : verbose, prints some info and step timings,

#level=verbosity level (integer)
-par : specifies PARAMETER-file (default: moscito.par).
-sys : specifies SYSTEM-file.
-in : specifies input STRUCTURE-file (default: mosin.str) .
-out : specifies ouput STRUCTURE-file (default: mosout.str).
-gin : specifies input GROMOS-file.
-gout : specifies ouput GROMOS-file.
-crd : specifies coordinate CRD-file.
-xtc : specifies coordinate XTC-file.
-vel : specifies velocities VEL-file.
-dat : specifies DATA-file.
-log : specifies LOG-file.
-help : prints help text.

Starts the MD simulation using a configuration in a STRUCTURE-file specified by -in or given
in mosin.str. The forcefield is specified in the SYSTEM-file and the simulation control param-
eters have to be defined in a PARAMETER-file (default name is moscito.par). Intended for
condensed phase simulations applying periodic boundary conditions.

50

5.1.2 moscito-net

Needs: PARAMETER-file, SYSTEM-file, STRUCTURE-file
Output files: LOG-file, DATA-file, CRD-file, VEL-file
Usage: moscito-net -v

Optional Parameters:
-v : verbose, prints some info and step timings

This is the parallel version of the moscito simulation program. Please note that the parallel
moscito is still version 3. In addition, the executable resides in ./parallel/bin instead of
./bin as all other executables of the MOSCITO 4 distribution do. Since moscito-net is still
version 3 it does not support the XTC-format nor GROMOS-in/out formats nor the extensive
use of command line options. The PARAMETER-file has to be named moscito.par and the
STRUCTURE-file has to be called mos.structure .

5.1.3 mosdrop

Needs: PARAMETER-file, SYSTEM-file, STRUCTURE-file or GROMOS-file
Output files: LOG-file, DATA-file, CRD-file, XTC-file, VEL-file, STRUCTURE-file
GROMOS-file
Usage: mosdrop -par #PARAMETER-file -sys #SYSTEM-file -in #STRUCTURE-file -
out #STRUCTURE-file -gin #GROMOS-file -gout #GROMOS-file -crd #CRD-file -xtc
#XTC-file -vel #VEL-file -dat #DATA-file -log #LOG-file -v #level -help

Optional Parameters:
-v : verbose, prints some info and step timings,

#level=verbosity level (integer)
-par : specifies PARAMETER-file (default: moscito.par).
-sys : specifies SYSTEM-file.
-in : specifies input STRUCTURE-file (default: mosin.str) .
-out : specifies ouput STRUCTURE-file (default: mosout.str).
-gin : specifies input GROMOS-file.
-gout : specifies ouput GROMOS-file.
-crd : specifies coordinate CRD-file.
-xtc : specifies coordinate XTC-file.
-vel : specifies velocities VEL-file.
-dat : specifies DATA-file.
-log : specifies LOG-file.
-help : prints help text.

This is a MOSCITO simulation program which does not apply periodic boundary conditions.
It is basically intended for simulations of isolated molecules (ore droplets of few molecules) in
the gas phase. Please note that there are some minor differences with respect to the normal
MOSCITO simulation program: 1. There is, of course, no pressure scaling and definitions of
box-lengths are neglected. 2. All N2 intermolecular nonbonded interactions are considered.
Consequently all Ewald/PME,cutoff, neighborlist keywords have no effect.

51

5.2 Basic STRUCTURE-file manipulation

5.2.1 center

Needs: STRUCTURE-file
Usage: center bx by bz < input.structure > output.structure

Creates a new simulation box around a molecular configuration contained in input.structure.
The configuration is placed at the very center of a new box with dimensions bx, by and bz
(in nm). The configuration is placed with respect to its geometrical center. Reads a moscito
STRUCTURE-file from 〈STDIN〉 and writes output to 〈STDOUT〉.

5.2.2 changedens

Needs: STRUCTURE-file
Usage: changedens s < input.structure > output.structure

Creates a new configuration with a density (compared to that of input.stucture) scaled by
a factor s. Note that only intermolecular distances (and the box-dimensions of course) are
changed this way. Reads a moscito STRUCTURE-file from 〈STDIN〉 and writes output to
〈STDOUT〉.

5.2.3 delete

Needs: STRUCTURE-file
Usage: delete #1 #2 . . . #n < input.structure > output.structure

Deletes molecules with number #1 #2 . . . #n from input.stucture. Reads a moscito
STRUCTURE-file from 〈STDIN〉 and writes output to 〈STDOUT〉.

5.2.4 duplicate

Needs: STRUCTURE-file
Usage: duplicate nx ny nz < input.structure > output.structure

Creates a new larger structure by duplicating the original structure. The original structure
is duplicated (nx, ny, nz) times in x-, y- and z-direction. Reads a moscito STRUCTURE-file
from 〈STDIN〉 and writes output to 〈STDOUT〉.

5.2.5 infostr

Needs: SYSTEM-file, STRUCTURE-file
Usage: infostr -sys #SYSTEM-file < input.structure

Necessary Parameters:
-sys : specifies SYSTEM-file.

Optional Parameters:
-e : calculate electrostatic properties

of the individual molecules.
-v : verbose, prints some info.
-help : prints help text.

52

Reads a configuration and calculates reports some properties of the structure file such as
density, number of molecule types, number of molecules, etc. When using the option -e, the
program calculates the charge, dipole and quadrupole moment for any single molecule in the
system. Reads a moscito STRUCTURE-file from 〈STDIN〉 and writes output to 〈STDOUT〉.

5.2.6 mirror

Needs: STRUCTURE-file
Usage: mirror x < input.structure > output.structure

Creates a new configuration that has been mirrored according to one of three possible mirror
planes: A x specifies the y-z plane, a y specifies the x-z plane and a z specifies the x-y plane as
mirror plane. Please note that the mirroring operation inverts the chiral center when applied
to optically active molecules. Reads a moscito STRUCTURE-file from 〈STDIN〉 and writes
data to 〈STDOUT〉.

5.2.7 molmove

Needs: STRUCTURE-file
Usage: molmove n dx dy dz < input.structure > output.structure

Translates molecule number n of the molecular configuration contained in input.structure ac-
cording to vector (dx, dy, dz) (all in nm). Reads a moscito STRUCTURE-file from 〈STDIN〉 and
writes data to 〈STDOUT〉.

5.2.8 rotate

Needs: STRUCTURE-file
Usage: rotate ra rb rc < input.structure > output.structure

Rotates a molecular configuration in three dimensions. The rotation is specified with three
Euler angles given by ra, rb and rc (in degrees). Reads a moscito STRUCTURE-file from
〈STDIN〉 and writes output to 〈STDOUT〉.

5.2.9 scalevel

Needs: STRUCTURE-file
Usage: scalevel s < input.structure > output.structure

Scales all the velocities contained in a structurefile by a factor s. Can be used to reset the
velocities or to them adjust to a different temperature. Moreover, this feature can be useful,
when one has changed the mass of a particle for example. Reads a moscito STRUCTURE-file
from 〈STDIN〉 and writes output to 〈STDOUT〉.

53

5.2.10 sortstr

Needs: STRUCTURE-file
Usage: sortstr -sys #SYSTEM-file < input.structure > output.structure

Necessary Parameters:
-sys : specifies SYSTEM-file.

Optional Parameters:
-v : verbose, prints some info.
-help : prints help text.

Sorts molecules in a structure file according to their molecule type index (Position of its
molecule-section in the system file). Reads a moscito STRUCTURE-file from 〈STDIN〉 and
writes sorted STRUCTURE-file to 〈STDOUT〉.

5.2.11 struccombine

Needs: STRUCTURE-file
Usage: struccombine x input1.structure input2.structure > output.structure

Merges two configurations contained in input1.structure and input2.structure and glues them
together at the y-z plane (command line option x), x-z plane (option y) or x-y plane (op-
tion z). Reads a moscito STRUCTURE-file specified at command-line and writes output to
〈STDOUT〉.

5.2.12 suggestk

Needs: STRUCTURE-file
Usage: suggestk a < input.structure

Extracts the box-dimensions and suggests a PME mesh spacing suitable for the fftw-based
fast Fourier transform routines. Parameter a defines the mesh-width and has to be given in Å.
Reads a moscito STRUCTURE-file from 〈STDIN〉 and writes output (three integer numbers)
to 〈STDOUT〉.

5.2.13 sysbuild

Needs: SYSTEM-file (containing build-section)
Output files: STRUCTURE-file
Usage: sysbuild -sys #SYSTEM-file > out.structure

Necessary Parameters:
-sys : specifies SYSTEM-file.

Optional Parameters:
-v : verbose, prints some info.
-help : prints help text.

sysbuild is intended to generate structure files from scratch. It reads the information contained
in the build-section in SYSTEM-file and writes a moscito STRUCTURE-file to 〈STDOUT〉.

54

5.2.14 sysrandomize

Needs: SYSTEM-file, STRUCTURE-file
Output files: STRUCTURE-file
Usage: sysrandomize -sys SYSTEM-file < input.structure > out.structure

Necessary Parameters:
-sys : specifies SYSTEM-file.

Optional Parameters:
-v : verbose, prints some info.
-help : prints help text.

When creating a new STRUCTURE-file (e.g. with sysbuild) the molecule ensemble is gener-
ated by following a clearly defined pattern. However, the correlation between the location
of a molecule and its position in the STRUCTURE-file (molecule number) is sometimes not
wanted. Therefore sysrandomize finds a new randomly chosen position in the STRUCTURE-
file for each molecule and thus destroying this correlation. Reads a moscito STRUCTURE-file
from 〈STDIN〉 and writes output to 〈STDOUT〉.

5.3 Advanced STRUCTURE-file manipulation

5.3.1 align_inert

Needs: SYSTEM-file, STRUCTURE-file
Usage: align_inert -sys #SYSTEM-file -i < input.structure > output.structure

Necessary Parameters:
-sys : specifies SYSTEM-file.

Optional Parameters:
-i : Print detailed information on the moment of inertia to

to 〈STDOUT〉instead of aligned STRUCTURE-file.
-v : verbose, prints some general info.
-help : prints help text.

Reads a configuration and rotates any molecule in the configuration such that principle axis
system of its moment of inertia tensor coincides with the laboratory frame. In most cases
this procedure will be applied to STRUCTURE-files containing just one molecule. When op-
tion -i is used detailed information of the moment of inertia of the molecules is displayed
and no aligned STRUCTURE-file will be produced. Reads a moscito STRUCTURE-file from
〈STDIN〉 and writes output to 〈STDOUT〉.

5.3.2 rm_moment

Needs: PARAMETER-file, SYSTEM-file, STRUCTURE-file
Usage: rm_moment < input.structure > output.structure

Removes a total linear and total angular momentum from a configuration contained in in-
put structure. Nevertheless, when starting a simulation run the “stop momentum” keyword
should always be set in moscito.par since the accuracy provided by the STRUCTURE-file is

55

orders of magnitude lower than machine precision. Reads a moscito STRUCTURE-file from
〈STDIN〉 and writes output to 〈STDOUT〉.

5.3.3 mom_invert

Needs: STRUCTURE-file
Usage: mom_invert < input.structure > output.structure

Inverts the momenta of all the particles. This rather esoteric feature can be used for example
to propagate a system back in time. Please notice that the the STRUCTURE-file format pro-
vides a rather low accuracy with respect to velocities. Reads a moscito STRUCTURE-file from
〈STDIN〉 and writes output to 〈STDOUT〉.

5.4 Properties of a system defined in a STRUCTURE-file

5.4.1 energy

Needs: PARAMETER-file, SYSTEM-file, STRUCTURE-file
Usage: energy -par #PARAMETER-file -sys #SYSTEM-file -v -help< STRUCTURE-file

Necessary Parameters:
-par : specifies PARAMETER-file.
-sys : specifies SYSTEM-file.

Optional Parameters:
-v : verbose, prints some info.
-help : prints help text.

Calculates potential and kinetic energy and pressure of system defined in input structure. The
potential energy is further analysed with respect to inter- and intramolecular contributions.
The components of the intermolecular electrostatic energy like real space and reciprocal lattice
contribution are specified as well. energy can be used to check the configuration/convergence
of the Ewald sum defined in PARAMETER-file. Reads a moscito STRUCTURE-file from
〈STDIN〉 and writes formatted text info output to 〈STDOUT〉.

5.5 Converting STRUCTURE-files into different formats

5.5.1 struc2dlp

Needs: STRUCTURE-file
Usage: struc2dlp < input.structure > output.dl_poly

Creates an INPUT file for the DL_POLY simulation program containing the complete struc-
tural information. Reads a moscito STRUCTURE-file from 〈STDIN〉 and writes the DL POLY
input data to 〈STDOUT〉. Not a very sophisticated tool and just intended to provide a first
step when setting up a DL_POLY run.

56

5.5.2 struc2mmf

Needs: SYSTEM-file, STRUCTURE-file
Usage: struc2mmf -sys #SYSTEM-file < input.structure > output.mmf

Necessary Parameters:
-sys : specifies SYSTEM-file.

Optional Parameters:
-v : verbose, prints some info.
-help : prints help text.

Creates a MOSCITO META FILE (mmf) from information contained in the SYSTEM-file and
STRUCTURE-file. The new mmf-file can be used e.g. for further forcefield development.
Please note that the atom labels written to the mmf-file are identical to the atom labels con-
tained in the system-file! Normally, these labels are not (!!) equivalent to the ones used in the
original mmf- or forcefield files. Therefore they have to be modified by hand before one can
proceed further (sorry). Reads a moscito STRUCTURE-file from 〈STDIN〉 and writes mmf-
data to 〈STDOUT〉.

5.5.3 struc2pdb

Needs: STRUCTURE-file
Usage: struc2pdb < input.structure > output.pdb

Creates a Brookhaven crystallographic data bank format (pdb) which can be further processed
by visualisation tools such as e.g. Rasmol. Each molecule will be represented as one “group”
in the pdb-file which is labelled according to the first three characters of the molecule-label
given in the STRUCTURE-file. Note that the labels are always lower case. Reads a moscito
STRUCTURE-file from 〈STDIN〉 and writes pdb-data to 〈STDOUT〉.

5.5.4 struc2pov

Needs: STRUCTURE-file
Usage: struc2pov input.structure output.pov d rx ry

Creates a scene which can be rendered with the Persistence of Vision (POV) raytracer. The
camera position has to be specified by a distance d (in nm) and polar angle rx and azimuthal
angle ry (both angles have to be given in degrees). Reads a moscito STRUCTURE-file from
〈STDIN〉 and writes the POV scene data to 〈STDOUT〉.

5.5.5 struc2xyz

Needs: STRUCTURE-file
Usage: struc2xyz < input.structure > output.xyz

Creates a “standard” plain xyz file as used e.g. by xmakemol. The site-labels are con-
verted into element-labels where possible. However, in some cases this procedure leads to
unsatisatisfactory results, e.g. when aliphatic carbons (OPLS Type: CA) are interpreted as
Calcium. Note that the labels are always lower case. Reads a moscito STRUCTURE-file from
〈STDIN〉 and writes xyz-data to 〈STDOUT〉.

57

5.5.6 struc2gro

Needs: STRUCTURE-file
Usage: struc2gro < input.structure > output.gro

Creates a GROMOS input file as used e.g. by the GROMACS or GROMOS. Reads a moscito
STRUCTURE-file from 〈STDIN〉 and writes gro-data to 〈STDOUT〉.

5.6 Calculation of simple thermodynamic properties from
simulation runs

5.6.1 average

Needs: any file
Usage: average -e < some.dat

Optional Parameters:
-e : estimate error using block averages

Calculates average and error estimate for any numerical quantity. The error estimate is based
on the block average method by Flyvbjerg and Petersen [19]. The method is discussed in
detail in the book by Frenkel and Smit [2] pp. 381. The data is read from 〈STDIN〉. The
data-file some.dat should just contain one single column. The format is free. When using no

option the progam calculates just the average 〈x〉 and statistical error
√
〈x〉2 − 〈x2〉/

√
N− 1

(assuming statistically uncorrelated data) and prints it to 〈STDOUT〉. However, typically the
data is to some exetend correlated and therefore the statistical error obtained as shown above
is unrealistically small. Therefore the block averaging method can be applied: When using
option -e is the block averaging is performed and the results are written to 〈STDOUT〉. The
first column indicates the log2, of the block-length. The second column gives the statistical
error according to the actual block-length and the third column species the error of column 2.

5.6.2 avdata

Needs: DATA-file
Usage: avdata < mos.data

Calculates average 〈x〉 and variance
√
〈x〉2 − 〈x2〉 for all thermodynamic properties contained

in the moscito DATA-file. Reads a moscito DATA-file from 〈STDIN〉 and writes formatted info
output to 〈STDOUT〉.

5.6.3 calc_err

Needs: DATA-file
Usage: calc_err < mos.data

Calculates averages and error estimates for all thermodynamic properties contained in the
moscito DATA-file. The error estimation is based on the calculation of the statistical ineffi-
ciency as proposed in the textbook on “Computer simulation of Liquids” by M.P. Allen and

58

D.J. Tildesley (pg. 192 ff). The data order is the following: 1. Averages. 2. Fluctuation am-
plitudes. 3. Estimated correlation sequence lengths (corresponding to a maximum statistical
inefficiency) in time steps. 4. Estimated errors. Reads a moscito DATA-file from 〈STDIN〉 and
writes formatted info output to 〈STDOUT〉.

5.6.4 density_err

Needs: SYSTEM-file, STRUCTURE-file, DATA-file
Usage: density_err -sys #SYSTEM-file -in #STRUCTURE-file < mos.dat

Necessary Parameters:
-sys : specifies SYSTEM-file.
-in : specifies STRUCTURE-file.

Calculates averages and error estimates for the total mass density. The error estimation and
output formatting is done as discussed in the previous section. Reads a moscito DATA-file
from 〈STDIN〉 and writes formatted info output to 〈STDOUT〉.

5.7 Structure of liquids — calculation of pair distribution
functions

5.7.1 gofr, gofr_large

Needs: SYSTEM-file, STRUCTURE-file, CRD-file/XTC-file
Output files: gr.dat, sq.dat, Nnn.dat
Usage: gofr/gofr_large -sys SYSTEM-file -in STRUCTURE-file -crd #CRD-files -xtc
#XTC-files -gap #gap -help -n #histogram entries -rmin #rmin -rmax #rmax -qmin #qmin
-qmax #qmax

Necessary Parameters:
-sys : specifies SYSTEM-file.
-in : specifies STRUCTURE-file.
-crd : specifies moscito coordinate (CRD) files.

(multiple files can be specified)
-xtc : specifies moscito coordinate (XTC) files.

(multiple files can be specified)
Optional Parameters:

-gap : gap between two configurations
-help : prints help message
-n : number of histogram entries
-rmin : g(r) minimum r.
-rmax : g(r) maximum r.
-qmin : s(q) minimum q.
-qmax : s(q) maximum q.

59

#.........................place this section after
the last molecule-section
in the current {SYSTEM}-file
begin{gengofr}

2 1 1 1 # molecule a site a molecule b site b
2 3 1 1
2 5 1 1
gr_range 0.1 1.0 # (range in nm)

end{gengofr}

Figure 5.1: Example for the required additional SYSTEM-file section for calcgofr.

gofr and gofr_large calculate pair correlation functions between site-site pairs αβ in molecules
according to

gαβ(r) =
V

2πr2N2

〈
N∑
i=1

N∑
j=i+1

δ(r− riαjβ)

〉
. (5.1)

N represents the total number of molecules in a simulation, i and j are running indices over
all molecules while α and β indicate the site-pairs. V is the volume of the simulation box. In
addition the partial structure factor is calculated according to

sαβ(q) − 1 = 4πρ

∫
r2 [gαβ(r) − 1]

sin(qr)

qr
dr , (5.2)

where ρ denotes the atomic number density of the system and q represents the momentum
transfer vector.

gofr makes use of the minium image convention, hence distances larger than half of the
box-length will lead to errornous data. gofr_large uses a 27× replicated system, hence, a larger
r-range is accessible (Absolute limit: box-length). However, In order to minimize the occur-
rence of artificial correlations at large r, distances larger than

√
3/2 the box-length should be

avoided. It has to be stressed that gofr_large is several times slower than gofr.
The site-site pairs to be considered have to be specified explicitly in an additional

SYSTEM-file section (see Figure 5.1) at the very end of the current SYSTEM-file. The syn-
tax is the following: Line by line the site-site pairs have to be indicated explicitly by their
molecule reference number (order of appearance in current SYSTEM-file) and site reference
(position in in the configuration environment) therein. Please note that only chemically equiv-
alent site-site pairs should be considered here since the program generates only one single
pair-correlation function per run. Using the gr_range keyword the distance range (given in
nm) can be specified. Otherwise the command line options -rmin and -rmax have to be used

The program generates three formatted ASCII files: gr.dat contains the pair correlation
function and Nnn.dat contains the number of neighbors function, which is the number density
weighted integral over the pair correlation function (in both cases the r-values are given in
nm). sq.dat contains the corresponding partial structure factor where q is given in nm−1. If
the q-limits are not defined explicitly the program calculates them automatically according
qmin = 2π/(rmax − rmin) and qmax = 2π/∆r/5, where ∆r represents the binwidth of gr.dat.

60

5.7.2 gofrcms

Needs: SYSTEM-file, STRUCTURE-file, CRD-file/XTC-file
Output files: gr.dat, sq.dat, Nnn.dat
Usage: gofrcms -sys SYSTEM-file -in STRUCTURE-file -crd #CRD-files -xtc #XTC-files
-gap #gap -help -a #moltype a -b #moltype b -n #histogram entries -rmin #rmin -rmax
#rmax -qmin #qmin -qmax #qmax

Necessary Parameters:
-sys : specifies SYSTEM-file.
-in : specifies STRUCTURE-file.
-crd : specifies moscito coordinate (CRD) files.

(multiple files can be specified)
-xtc : specifies moscito coordinate (XTC) files.

(multiple files can be specified)
-a : moleculetype “a”
-b : moleculetype “a”

Optional Parameters:
-gap : gap between two configurations
-help : prints help message
-n : number of histogram entries
-rmin : g(r) minimum r.
-rmax : g(r) maximum r.
-qmin : s(q) minimum q.
-qmax : s(q) maximum q.

Calculates the center of mass pair correlation function and structure factor for a given pair of
molecule types. The molecule types as well as the r-range have to be specified at the command
line using the -a, -b, -rmin and -rmax options. Please note that no gengofr-section is used here.
For more information see section 5.7.1.

5.7.3 sofq

Needs: gr.dat from 〈STDIN〉
Output files: 〈STDOUT〉
Usage: sofq -rho #atomic density -qmin #qmin -qmax #qmax < gr.dat > sq.dat

Optional Parameters:
-rho : gap between two configurations
-qmin : s(q) minimum q.
-qmax : s(q) maximum q.

Calculates a partial structure factor from previously calculated gαβ(r)-data according to

sαβ(q) − 1 = 4πρ

∫
r2 [gαβ(r) − 1]

sin(qr)

qr
dr . (5.3)

The atomic number density ρ in the system has to be specified at the command line.

61

5.8 Single particle (molecule) dynamics in liquids

5.8.1 msdmol

Needs: PARAMETER-file, SYSTEM-file, STRUCTURE-file, CRD-files/XTC-files
Output file: msd.dat
Usage: msdmol -sys SYSTEM-file -in STRUCTURE-file -crd #CRD-files -xtc #XTC-files
-time #time -tmax #tmax -tgap #tgap -gap #gap

Necessary Parameters:
-sys : specifies SYSTEM-file.
-in : specifies STRUCTURE-file.
-crd : specifies moscito coordinate (CRD) files.

(multiple files can be specified)
-xtc : specifies moscito coordinate (XTC) files.

(multiple files can be specified)
-time : time interval between two configurations in CRD-file
-tmax : length of time correlation function-array

Optional Parameters:
-tgap : smallest gap for tcf evaluation
-gap : gap for data acquisition

Calculates the mean square displacement function

msd(δt) = 〈(~ri(t) −~ri(t+ δt)〉t,i

for the center of mass motion of the molecules contained in a simulation. Here the brackets
denote time averaging as well as averaging over all molecules belonging to a certain molecule
type. Therefore amsd-function is calculated for each type and added as an additional column
to msd.dat (in units of nm2). The first column, of course, contains the values for δt (in units of
#time). The (self) diffusion coefficient for each species is then given according to

Dself =
1

6
lim
δt→∞ ∂

∂δt
msd (δt)

as slope of themsd-function for large δt.
The structural data is read from a moscito CRD-file which has to be specified at the com-

mand line. To define the time-scale properly the program needs the exact time-spacing be-
tween two configurations (e.g. ps) using the -time option. This information can be taken for
example from the corresponding moscito.par file. The array-length of themsd time correlation
function has to be specified by #tmax. #tmax has to lie somewhere in the interval between one
and the number of configurations contained in the CRD-file. A quite reasonable upper limit
for #tmax is approximately about one tenth of the available total number of configurations.
For larger spacings the statistics typically becomes to poor. In some cases it is perhaps useful
not to use every configuration. Using #gap= 2 would only consider every second configu-
ration. In contrast the -tgap options influences only the smallest value for δt, whereas any
available configuration is still being considered for the time averaging.

62

5.8.2 dipolcor

Needs: PARAMETER-file, SYSTEM-file, STRUCTURE-file, CRD-files/XTC-files
Output files: dipol_p1.dat, dipol_p2.dat
Usage: dipolcor -sys SYSTEM-file -in STRUCTURE-file -crd #CRD-files -xtc #XTC-files
-time #time -tmax #tmax -tgap #tgap -gap #gap

Necessary Parameters:
-sys : specifies SYSTEM-file.
-in : specifies STRUCTURE-file.
-crd : specifies moscito coordinate (CRD) files.

(multiple files can be specified)
-xtc : specifies moscito coordinate (XTC) files.

(multiple files can be specified)
-time : time interval between two configurations in CRD-file
-tmax : length of time correlation function-array

Optional Parameters:
-tgap : smallest gap for tcf evaluation
-gap : gap for data acquisition

Calculates the reorientational time correlation functions for the molecular dipole vector

C1(δt) = 〈~ui(t) · ~ui(t+ δt)〉i,t

C2(δt) =

〈
3

2
(~ui(t) · ~ui(t+ δt))2 −

1

2

〉
i,t

according to the definition of first and second Legendre polynome. Here ~ui(t) denotes the
unit vector of the molecular dipole moment of molecule i at time t. The brackets denote
time averaging as well as molecule averaging. Averaging is performed over all molecules
belonging to a certain molecule-type. Thus reorientational correlation functions are obtained
for each molecule type and therefore for each type an additional column is added to the both
output files. Two files are created: dipol_p1.dat contains the C1 data and dipol_p1.dat holds the
C2 data. The values for δt (in units of #time) are always in the first column. The command line
options have a similar effect as the options discussed in section 5.8.1 for the msdmol command.

5.8.3 vectorcor

Needs: PARAMETER-file, SYSTEM-file, STRUCTURE-file, CRD-files/XTC-files
Output file: vec_p1p2.dat
Usage: vectorcor -sys SYSTEM-file -in STRUCTURE-file -crd #CRD-files -xtc #XTC-
files -time #time -tmax #tmax -tgap #tgap -gap #gap

63

#.........................place this section after
the last molecule-section
in the current {SYSTEM}-file
begin{vectorcor}

1 2 1 # molec. type site a site b
1 2 3

end{vectorcor}

begin{nvectorcor}
1 2 1 2 3 # molec. type sites a1 b1 a2 b2

end{nvectorcor}

Figure 5.2: Example for the required additional SYSTEM-file section for vectorcor and nvectorcor.

Necessary Parameters:
-sys : specifies SYSTEM-file.
-in : specifies STRUCTURE-file.
-crd : specifies moscito coordinate (CRD) files.

(multiple files can be specified)
-xtc : specifies moscito coordinate (XTC) files.

(multiple files can be specified)
-time : time interval between two configurations in CRD-file
-tmax : length of time correlation function-array

Optional Parameters:
-tgap : smallest gap for tcf evaluation
-gap : gap for data acquisition

Calculates the reorientational time correlation functions

C1(δt) = 〈~ui(t) · ~ui(t+ δt)〉i,t

C2(δt) =

〈
3

2
(~ui(t) · ~ui(t+ δt))2 −

1

2

〉
i,t

for unit-vectors defined by pairs of sites belonging to the same molecule. The site-site pairs
have to be specified explicitly in an additional SYSTEM-file section (see Figure 5.2) at the very
end of the current SYSTEM-file (vectorcor-section). The syntax is the following: Line by line
the site-site pairs have to be indicated explicitly by their molecule reference number (order of
appearance in current SYSTEM-file) and their site references (position in in the configuration
environment). Please notice that only chemically equivalent vectors should appear in one
vectorcor-section (like the two O-H vectors in a water molecule). The two correlation func-
tions a written to vec_p1p2.dat (δt: first column, C1: second column, C2: third column). The
command line options have a similar effect as the options discussed in section 5.8.1 for the
msdmol command.

5.8.4 nvectorcor

Needs: PARAMETER-file, SYSTEM-file, STRUCTURE-file, CRD-file
Output file: vec_p1p2.dat

64

Usage: nvectorcor -sys SYSTEM-file -in STRUCTURE-file -crd #CRD-files -xtc #XTC-
files -time #time -tmax #tmax -tgap #tgap -gap #gap

Necessary Parameters:
-sys : specifies SYSTEM-file.
-in : specifies STRUCTURE-file.
-crd : specifies moscito coordinate (CRD) files.

(multiple files can be specified)
-xtc : specifies moscito coordinate (XTC) files.

(multiple files can be specified)
-time : time interval between two configurations in CRD-file
-tmax : length of time correlation function-array

Optional Parameters:
-tgap : smallest gap for tcf evaluation
-gap : gap for data acquisition

Calculates the reorientational time correlation functions

C1(δt) = 〈~ui(t) · ~ui(t+ δt)〉i,t

C2(δt) =

〈
3

2
(~ui(t) · ~ui(t+ δt))2 −

1

2

〉
i,t

for unit-vectors defined as normal vectors according to ~u = ~u1 × ~u2 where ~u1 and ~u2 are
defined by pairs of sites belonging to the same molecule. Both vectors have to be specified
explicitly in an additional SYSTEM-file section (see Figure 5.2) at the very end of the current
SYSTEM-file (nvectorcor-section). The two correlation functions a written to vec_p1p2.dat (δt:
first column, C1: second column, C2: third column). The command line options have a similar
effect as the options discussed in section 5.8.1 for the vectorcor and msdmol command.

5.9 Geometry Optimization of individual molecules

5.9.1 zminit

Needs: SYSTEM-file
Output file: STRUCTURE-file
Usage: zminit -sys SYSTEM-file -out STRUCTURE-file

Necessary Parameters:
-sys : specifies SYSTEM-file.

Optional Parameters:
-out : specifies ouput STRUCTURE-file (default: mosout.str).

Performs a geometry optimization for one single molecule using the internal coordinates de-
fined in a zmatrix-environment (See section 10 for details). Only intramolecular interactions
are taken into account. Please note, that the SYSTEM-file shall not contain more than one
molecule section. The optimization starts, of course, with the configuration defined by the
initial (given) z-matrix. The parameters are successively optimized following a self converg-
ing line search procedure. When the convergence criteria is fulfilled, the converged potential

65

intramolecular energy as well as the final z-matrix are written to 〈STDOUT〉and the opti-
mized configuration is written to a output STRUCTURE-file. Please keep in mind that there
is no guarantee that the observed minimum energy structure represents the global minimum.
In order to confirm the a global energy minimum it is perhaps advised to start from several
different trial configurations.

5.9.2 addzmat.pl

Needs: SYSTEM-file, z-matrix-file
Output files: SYSTEM-file
Usage: addzmat.pl SYSTEM-file < z-matrix-file > SYSTEM-file (containing z-matrix)

Necessary Parameters:
#1 : specifies SYSTEM-file.

Adds the definition of a z-matrix (z-matrix-section) to the molecule-sections in a SYSTEM
file. Please apply addzmat.pl only to SYSTEM-files containing NOT more than ONE molecule
section. The program works that way: The text contained in the z-matrix-file is pasted into a
z-matrix subsection of the molecule section. Please note that no checks are performed whether
the definition of the z-matrix is reasonable, nor whether it is a z-matrix at all.

5.10 Creating an aqueous solution

5.10.1 solve

Needs: SYSTEM-file (solute), STRUCTURE-file (solute), STRUCTURE-file (water)
Output files: STRUCTURE-file
Usage: solve -sys SYSTEM-file -i STRUCTURE-file (solute) -w STRUCTURE-file (wa-
ter) -o STRUCTURE-file (output) -n #water model sites

Necessary Parameters:
-sys : specifies SYSTEM-file.
-i : STRUCTURE-file (solute).
-w : STRUCTURE-file (water).
-o : STRUCTURE-file (output).
-n : number of water-sites (default=3).

Optional Parameters:
-v : verbose, prints some info.
-help : prints help text.

Creates an aqueous solution by placing an arbitrary molecular solute configuration (which
may contain several different molecule types) into an aqueous surrounding given in terms of
a water configuration. Both configurations are merged and overlapping water molecules are
discarded. The final configuration is written to a new STRUCTURE-file.

1. solve needs the SYSTEM-file for the system that shall be put into the water box. The
name of the SYSTEM-file is specified at the command line. Keep in mind that this file
does not include the definition of the solvent water molecule.

66

In order to be able to run the solute/solvent simulation a new SYSTEM-file has to be to
be created that includes the definition of the solvent (water) molecule. This solute-plus-
water-SYSTEM-file can be easily created using the Perl scripts addspc.pl, addspce.pl and
addtip3p.pl described in the sections below.

2. solve needs two structure files: the first STRUCTURE-file has to contain the geometry
of the (solute) system which shall be a added to a water configuration. The second
STRUCTURE-file has to contain a configuration of water molecules with the atoms or-
dered as O, H, H. . .. solve assumes three-site water models such as SPC, SPCE or TIP3P
as a default. If four or five center models, such as TIP4P or TIP5P, are used, the virtual
sites have be placed at the fourth (and) fifth position and the -n option has to be used to
tell solve of how many interaction sites the actual water model consists.

The solute system is then added to the water configuration. All overlapping water
molecules are discarded and the combined configuration is stored in an output file de-
fined at the command line.

The solute molecules are stored in the beginning part of the configuration.

3. The SYSTEM-file for the new combined configuration has to follow some conventions as
outlined in Figure 5.3: 1. The water sites (OW,HW) definitions have to be placed above
the solute-sites definitions. 2. The water molecule definition must be the first molecule
to be defined.

The Perl-scripts addspc.pl, addspce.pl, addtip3p.pl, tip4p.pl and addtip5p.pl automatically
account for these necessities. It is therefore highly recommended to use them whenever
it is possible.

5.10.2 addspce.pl

Needs: SYSTEM-file (solute)
Output files: SYSTEM-file (solute+water)
Usage: addspce.pl SYSTEM-file (solute) > SYSTEM-file (solute+water)

Necessary Parameters:
#1 : specifies solute SYSTEM-file.

Adds the definition of the three site SPC/E water model to any SYSTEM file. addspce.pl has
been designed to work in combination with solve and therefore the required conventions are
respected.

5.10.3 addspc.pl

Needs: SYSTEM-file (solute)
Output files: SYSTEM-file (solute+water)
Usage: addspc.pl SYSTEM-file (solute) > SYSTEM-file (solute+water)

Necessary Parameters:
#1 : specifies solute SYSTEM-file.

67

#----HEADER SECTION
begin{sites}

OW #ADD OW SITE HERE (#1)
HW #ADD HW SITE HERE (#2)
...solute molecule sites
...

end{sites}

begin{lj...}
OW
HW
...solute molecule sites
...

end{lj...}

#----MOLECULE SECTION (ADD WATER-SECTION at #1)
begin{molecule}

label h2o
.....

end{molecule}

#----MOLECULE SECTION (SOLUTES-SECTIONS #2...#n)
begin{molecule}

label solute1 # (or whatever you like)
....

end{molecule}
begin{molecule}

label solute2 # (or whatever you like)
....

end{molecule}

Figure 5.3: Modifications necessary to turn a solute-SYSTEM-file into a solute-plus-water-SYSTEM-
file after solve has been used.

Adds the definition of the three site SPC water model to any SYSTEM file. addspc.pl has been
designed to work in combination with solve and therefore the required conventions are re-
spected.

5.10.4 addtip3p.pl

Needs: SYSTEM-file (solute)
Output files: SYSTEM-file (solute+water)
Usage: addtip3p.pl SYSTEM-file (solute) > SYSTEM-file (solute+water)

Necessary Parameters:
#1 : specifies solute SYSTEM-file.

Adds the definition of the three site TIP3P water model to any SYSTEM file. addtip3p.pl has
been designed to work in combination with solve and therefore the required conventions are
respected.

68

5.10.5 addtip4p.pl

Needs: SYSTEM-file (solute)
Output files: SYSTEM-file (solute+water)
Usage: addtip4p.pl SYSTEM-file (solute) > SYSTEM-file (solute+water)

Necessary Parameters:
#1 : specifies solute SYSTEM-file.

Adds the definition of the four site TIP4P water model to any SYSTEM file. addtip4p.pl has
been designed to work in combination with solve and therefore the required conventions are
respected.

5.10.6 addtip5p.pl

Needs: SYSTEM-file (solute)
Output files: SYSTEM-file (solute+water)
Usage: addtip5p.pl SYSTEM-file (solute) > SYSTEM-file (solute+water)

Necessary Parameters:
#1 : specifies solute SYSTEM-file.

Adds the definition of the five site TIP5P water model to any SYSTEM file. addtip5p.pl has
been designed to work in combination with solve and therefore the required conventions are
respected.

5.11 Building mixtures

5.11.1 mergestr

Needs: SYSTEM-file, STRUCTURE-file (system A), STRUCTURE-file (system B)
Output files: STRUCTURE-file
Usage: mergestr -sys SYSTEM-file -a STRUCTURE-file (system A) -b STRUCTURE-
file (system A) -l #limit -r #ratio > STRUCTURE-file (output)

Necessary Parameters:
-sys : specifies SYSTEM-file.
-a : STRUCTURE-file (system A).
-b : STRUCTURE-file (system B).
-l : limiting interaction energy.
-r : composition ratio [0-1]

Optional Parameters:
-i : print info.
-v : verbose, prints some info.
-help : prints help text.

The program is used to build binary or even more complex mixtures by merging two
STRUCTURE-files (A,B) and discarding overlapping molecules from systems A and B. In
order to work correctly both STRUCTURE-files have to correspond to the same SYSTEM-file
that has to contain all molecule definitions (in the correct order!) and which will afterwards

69

serve as the SYSTEM-file for the mixture. The program will always take the largest box dimen-
sions for each direction. To create a meaningful mixture configuration, overlapping molecules
discarded. “Overlapping” means that the pair interaction between two molecules exceeds a
certain value which has to be specified explicitly at the command line (using the -l option) in
units of kJ mol−1. Positive values indicate a repulsive interaction. Typically one will choose
a value of a few RT , say 10.0 kJ mol−1 as a limit. However, the composition of the mixture
has also to be determined. This is done by introducing the acceptance ratio-parameter s (-r
option) which can be varied between 0 and 1. The method works as following. Given the pair
interaction between two molecules exceeds the limiting value and hence the two molecules
“overlap”. Then the acceptance parameter s is compared with a newly created random num-
ber. If the random number is larger than s than the molecule from system B is discarded,
otherwise the molecule from system A eliminated. Hence, an acceptance parameter of “0”
means that all A-particles will survive while a value of “1” will result in a system contain-
ing just B-particles. Using the -i Option will just print the composition of merged system to
〈STDOUT〉. In order to create a certain fixed composition, one has perhaps to play around
with the acceptance parameter.

5.11.2 mixsys.pl

Needs: SYSTEM-file (system A), SYSTEM-file (system B)
Output files: SYSTEM-file (merged)
Usage: mixsys.pl SYSTEM-file (A) SYSTEM-file (B) > SYSTEM-file

Necessary Parameters:
#1 : specifies SYSTEM-file (A).
#2 : specifies SYSTEM-file (B).

Merges two system files containing each a definition of one molecule in order to create a
single system file with two molecule sections. Please check that there are no identical site
type specifiers used in system files A and B. Otherwise mixsys.pl will stop without merging
the two system files.

5.12 Adding hydrogens to united atom carbons

5.12.1 addh2str

Needs: SYSTEM-file, STRUCTURE-file
Output file: STRUCTURE-file
Usage: addh2str -sys SYSTEM-file < STRUCTURE-file > STRUCTURE-file -v #level
-help

Necessary Parameters:
-sys : specifies SYSTEM-file.

Optional Parameters:
-v : verbose, prints some info and step timings,

#level=verbosity level (integer)
-help : prints help text.

70

#----MOLECULE SECTION

begin{molecule}
....
begin{hydrogen}

2 car 1 3 1.045 # Add one aromatic hydrogen
3 car 2 4 1.045 # Add one aromatic hydrogen
5 car 4 6 1.045 # Add one aromatic hydrogen
6 car 1 5 1.045 # Add one aromatic hydrogen

7 ch1 4 8 10 1.09 # Add one ternary aliphatic hydrogen

8 ch2 7 9 1.09 # Add two secondary aliphatic hydrogens

9 ch3 8 7 1.09 # Add three primary aliphatic hydrogens
10 ch3 7 4 1.09 # Add three primary aliphatic hydrogens
end{hydrogen}
....

end{molecule}

Figure 5.4: hydrogen-section defining explicit hydrogens to be added to united atom carbon centers.
The section is used by addh2crd and addh2str. The numbering of the example corresponds 1-methyl-
propyl-benzene as given in the insert.

Creates explicit hydrogen atoms which are added to an united atom carbon center. The stere-
ochemical information has to be defined in a separate “hydrogen” sub-section within the cor-
responding molecule section (see Figure 5.4). The outline of this section is as following: The
first number indicates the site to which the hydrogen atoms is attached. The second column
species the type: aromatic carbon (car) and primary (ch1), secondary (ch2) and tertiary (ch3)
aliphatic carbons. Two following numbers indicate the direct neighbors of the central C-atom
which. Only in case of the ternary C-atom three direct neighbors have to be specified. The
final column defines the CH-bond length in Å. Please note that in case of a ch2-definition, two
hydrogen atoms and and in case of ch3 three atoms will be created.

71

5.12.2 addh2crd

Needs: SYSTEM-file, STRUCTURE-file, CRD-/XTC-files
Output file: CRD-file
Usage: addh2crd -sys SYSTEM-file -in STRUCTURE-file -v #level -crd #CRD-files -xtc
#XTC-files -help

Necessary Parameters:
-sys : specifies SYSTEM-file.
-in : specifies STRUCTURE-file.
-crd : specifies moscito coordinate (CRD) files.

(multiple files can be specified)
-xtc : specifies moscito coordinate (XTC) files.

(multiple files can be specified)
Optional Parameters:

-v : verbose, prints some info and step timings,
#level=verbosity level (integer)

-help : prints help text.

Works similar as addh2str, but reads a trajectory file (or a series of trajectory files) and creates
a new CRD-file called mos.crd_addH containing just the positions of the added hydrogen
atoms.

5.13 Miscellaneous

5.13.1 config_mos

Needs: SYSTEM-file, (STRUCTURE-file)
Output file: PARAMETER-file
Usage: config_mos

Configures a complete MOSCITO simulation run in an interactive session. The program runs
at the command-line by successively asking for definitions (and in most cases providing rea-
sonable suggestions). All necessary parameters are defined in order to create a reasonable
simulation run setup so that a simply typing moscito at the command-line should be enough
to start the simulation afterwards.

5.13.2 b2l

Needs: CRD-file or VEL-file
Output file: CRD-file or VEL-file
Usage: b2l <infile> <outfile>

Optional Parameters:
-help : prints help text.

Interconverts binary data files such as CRD- or VEL-files from big-endian format to little-
endian (and vice versa). Rerunning b2l on the <outfile> will create a file identical to the initial

72

<infile>. The program helps to analyze data produced on eg. IBM RS6000 machines (big-
endian) on Intel-architectures (little-endian). Please don’t apply the b2l program to XTC-files
since these are stored already in a machine independent format.

5.13.3 crd2xtc

Needs: CRD-file or XTC-file
Output file: CRD-file or XTC-file
Usage: crd2xtc -c CRD-file -x XTC-file -p #precision -r

Necessary Parameters:
-c : specifies moscito coordinate (CRD) file.
-x : specifies moscito coordinate (XTC) file.

Optional Parameters:
-p : defining the precision. Default: 1000
-r : (reverse: converting XTC-file to CRD-file.
-help : prints help text.

Converts a CRD-file into the substantially more compact XTC-file and vice versa (when ap-
plying the -r Option). The -p option defines the precision which is used for storing the coor-
dinates in the XTC-format. Here a higher number indicates a higher precision. The default
value (when no -p option and value is specified) is “1000” and defines a resolution of about 1
pm which is sufficiently accurate for most cases. A value of “10000” would result in accuracy
of 0.1 pm and so forth.

5.13.4 addsection.pl

Needs: SYSTEM-file, text-file
Output files: SYSTEM-file
Usage: addsection.pl SYSTEM-file < text-file > SYSTEM-file

Necessary Parameters:
#1 : specifies SYSTEM-file.

Inserts an additional section read from an ASCII text-file into the molecule-sections of a SYS-
TEM file. The text is pasted after the configuration part subsection of the molecule section.

73

Bibliography

[1] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford Science Publications, (1989).
1, 30

[2] D. Frenkel and B. Smit. Understanding Molecular Simulation — From Algorithms to Applications.
Academic Press Inc., San Diego, (1996). 1, 31, 58

[3] S. F. R. Haberlandt, G. Peinel and K. Heinzinger. Molekulardynamik — Grundlagen und Anwendun-
gen. Vieweg, (1995). 1

[4] A. R. Leach. Molecular Modelling — Principles and Applications. Addison Wesley Longman Limited,
(1996). 1

[5] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gouls, K. M. M. Jr., D. M. Fergueson, D. C. Spellmeyer,
T. Fox, J. W. Caldwell and P. A. Kollman, “A second generation force field for the simulation of
proteins, nucleic acids and organic molecules”, J. Am. Chem. Soc., 117, 5179–5197, (1995). 1, 11,
42, 43

[6] M. Frigo and S. G. Johnson. “FFTW: An Adaptive Software Architecture for the FFT”. In ICASSP
conference proceedings, Vol. 3, 1381–1384, (1998). 5

[7] J. P. Ryckaert, G. Ciccotti and H. J. C. Berendsen, “Numerical integration of the cartesian equa-
tions of motions of a system with constraints: Molecular dynamics of n–alkanes”, J. Comp. Phys.,
23, 327–341, (1977). 8

[8] F. Müller–Plathe, “Singularity free treatment of linear bond angles”, CCP5 Newsletter, 44, , July
1995. 13, 41

[9] P. P. Ewald, “Die Berechnung optischer und elektrostatischer Gitterpotentiale”, Ann. Phys., 64,
253–287, (1921). 15

[10] R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. IOP Publishing, Bristol
and Philadelphia, (1988). 21

[11] T. A. Darden, D. York and L. Pedersen, “Particle mesh Ewald: An N log(N) method for Ewald
sums in large systems”, J. Chem. Phys., 98, 10089–10092, (1993). 21

[12] U. Essmann, L. Perera, M. L. Berkowitz, T. A. Darden, H. Lee and L. G. Pedersen, “A smooth
particle mesh Ewald method”, J. Chem. Phys., 103, 8577–8593, (1995). 21, 23, 32

[13] S. Nosé and M. L. Klein, “Constant pressure molecular dynamics for molecular systems”, Mol.
Phys., 50, 1055–1076, (1983). 25

[14] J. Alejandre, D. J. Tildesley and G. Chapela, “Molecular dynamics simulation of the orthobaric
densities and surface tension of water”, J. Chem. Phys., 102, 4574–4583, (1995). 25

[15] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola and J. R. Haak, “Molecular
dynamics with coupling to an external bath”, J. Chem. Phys., 81, 3684–3690, (1984). 25

74

[16] N. Anastasiou and D. Fincham. Programs for the dynamic simulation of liquids and solids —
MDIONS: rigid ions using the Ewald sum. CCP5, Dept. Chem., Royal Holloway College, Egham,
Surrey, TW20 OEX, U.K., (1981). 30

[17] W. F. van Gunsteren and H. J. C. Berendsen, “Moleküldynamik Computersimulationen:
Methodik, Anwendungen und Perspektiven in der Chemie”, Angew. Chem., 102, 1020–1055,
(1990). 32

[18] G. S. Kell, J. Chem. Engeneer. Dat., 12, 66–69, (1967). 33

[19] H. Flyvbjerg and H. Petersen, “Error estimates on averages of correlated data”, J. Chem. Phys., 91,
461–466, (1989). 58

75

	Introduction
	Preliminaries
	Citation Form
	Obtaining MOSCITO 4
	Disclaimer
	Acknowledgements

	Installation
	Source distribution
	Fixed array dimensions
	Some Intel/AMD specific code
	Some notes concerning recent Red Hat and SuSE Linux distributions

	Binary distribution
	Basic testing

	MD--Simulation: Basics
	MD--Algorithm
	Constraint dynamics
	Periodic boundary conditions and minimum image convention
	The MOSCITO 4 force field model
	Handling electrostatic interactions
	The concept of Ewald summation
	Real space sum
	Reciprocal lattice sum
	Corrections for self-interaction
	Total electrostatic energy

	Smooth particle mesh Ewald

	Temperature
	Pressure
	Berendsen--Ensemble

	Setting up a MD--Simulation
	Simulation Control: PARAMETER--file
	Forcefield declaration
	Startup configuration
	Force calculation
	SHAKE setup
	Ewald summation setup
	MD run specifications
	Weak coupling control
	MD-Output control

	Forcefield Definition: SYSTEM--file
	Header--chapter
	The site--environment
	Defining Lennard-Jones interactions

	Molecule--chapter
	The label--command
	The freedom--command
	The configuration--environment
	Applying constraints: The constraints--environment
	Switch off explicit interaction pairs: The exclude--environment
	Defining virtual sites: The virtual--environment
	Defining bonds: The bond--environment
	Defining bond--bending interactions: The angle--environment
	Defining dihedral--potentials: The dihedral--environment
	Modified nonbonded intramolecular interactions: The nonbonbonded--environment
	Internal coordinates: The z-matrix--environment

	Footer--chapter
	The build--environment
	Calculating electric field gradients: The efg--environment
	Introducing harmonic intermolecular interactions: The umbrella environment

	File--formats
	STRUCTURE--file
	LOG--file
	DATA--file
	CRD--file
	XTC--file
	VEL--file

	MOSCITO Command Reference
	Running a MD Simulation
	moscito
	moscito-net
	mosdrop

	Basic STRUCTURE-file manipulation
	center
	changedens
	delete
	duplicate
	infostr
	mirror
	molmove
	rotate
	scalevel
	sortstr
	struccombine
	suggestk
	sysbuild
	sysrandomize

	Advanced STRUCTURE-file manipulation
	align_inert
	rm_moment
	mom_invert

	Properties of a system defined in a STRUCTURE-file
	energy

	Converting STRUCTURE-files into different formats
	struc2dlp
	struc2mmf
	struc2pdb
	struc2pov
	struc2xyz
	struc2gro

	Calculation of simple thermodynamic properties from simulation runs
	average
	avdata
	calc_err
	density_err

	Structure of liquids --- calculation of pair distribution functions
	gofr, gofr_large
	gofrcms
	sofq

	Single particle (molecule) dynamics in liquids
	msdmol
	dipolcor
	vectorcor
	nvectorcor

	Geometry Optimization of individual molecules
	zminit
	addzmat.pl

	Creating an aqueous solution
	solve
	addspce.pl
	addspc.pl
	addtip3p.pl
	addtip4p.pl
	addtip5p.pl

	Building mixtures
	mergestr
	mixsys.pl

	Adding hydrogens to united atom carbons
	addh2str
	addh2crd

	Miscellaneous
	config_mos
	b2l
	crd2xtc
	addsection.pl

	Bibliography

